AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Hydrogen evolution activity enhancement by tuning the oxygen vacancies in self-supported mesoporous spinel oxide nanowire arrays

Dali Liu1,2Chao Zhang1Yifu Yu1,3Yanmei Shi1Yu Yu1Zhiqiang Niu3Bin Zhang1,2,3( )
Department of ChemistrySchool of Scienceand Tianjin Key Laboratory of Molecular Optoelectronic ScienceTianjin UniversityTianjin300072China
Collaborative Innovation Center of Chemical Science and EngineeringTianjin300072China
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)Nankai UniversityTianjin300071China
Show Author Information

Graphical Abstract

Abstract

The development of facile strategies to tune the oxygen vacancy (OV) content in transition metal oxides (TMOs) is paramount to obtain low-cost and stable electrocatalysts, but still highly challenging. Taking NiCo2O4 as a model system, we have experimentally established a facile calcination and electrochemical activation (EA) methodology to dramatically increase the concentration of OVs and provide theoretical insight into how the concentration of OVs affects the performance of spinel TMOs towards the electrochemical hydrogen evolution reaction (HER). A self-supported cathode of OV-rich NiCo2O4 nanowire arrays was found to exhibit higher HER activity and better stability in alkaline media than its counterparts with fewer OVs. The electrocatalytic HER activity was in good agreement with the increasing concentration of OVs in the studied samples. A large current density of 360 mA·cm–2 was reached with an overpotential of only 317 mV. Additionally, such a facile strategy was able to efficiently generate OVs in other TMOs (e.g., CoFe2O4 and NiFe2O4) for enhanced HER performance. In addition, our theoretical results suggest that the increasing OV concentration reduces the adsorption energy of water molecules and their dissociation energy barrier on the surface of the catalyst, thus leading to performance improvement of spinel TMOs toward the electrochemical HER. This work may open a new avenue to increase the concentration of OVs in TMOs in a controlled manner for promising applications in a variety of fields.

Electronic Supplementary Material

Download File(s)
nr-11-2-603_ESM.pdf (3.6 MB)

References

1

Lu, S. Q.; Zhuang, Z. B. Electrocatalysts for hydrogen oxidation and evolution reactions. Sci. China Mater. 2016, 59, 217–238.

2

Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060–2086.

3

Vesborg, P. C. K.; Seger, B.; Chorkendorff, I. Recent development in hydrogen evolution reaction catalysts and their practical implementation. J. Phys. Chem. Lett. 2015, 6, 951–957.

4

Wang, T.; Wang, X. J.; Liu, Y.; Zheng, J.; Li, X. G. A highly efficient and stable biphasic nanocrystalline Ni–Mo–N catalyst for hydrogen evolution in both acidic and alkaline electrolytes. Nano Energy 2016, 22, 111–119.

5

Zhang, L.; Wu, H. B.; Yan, Y.; Wang, X.; Lou, X. W. Hierarchical MoS2 microboxes constructed by nanosheets with enhanced electrochemical properties for lithium storage and water splitting. Energy Environ. Sci. 2014, 7, 3302–3306.

6

Feng, L. -L.; Yu, G. T.; Wu, Y. Y.; Li, G. -D.; Li, H.; Sun, Y. H.; Asefa, T.; Chen, W.; Zou, X. X. High-index faceted Ni3S2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting. J. Am. Chem. Soc. 2015, 137, 14023–14026.

7

Li, Y. J.; Zhang, H. C.; Jiang, M.; Kuang, Y.; Sun, X. M.; Duan, X. Ternary NiCoP nanosheet arrays: An excellent bifunctional catalyst for alkaline overall water splitting. Nano Res. 2016, 9, 2251–2259.

8

Zhang, C.; Huang, Y.; Yu, Y. F.; Zhang, J. F.; Zhuo, S. F.; Zhang, B. Sub-1.1 nm ultrathin porous CoP nanosheets with dominant reactive {200} facets: A high mass activity and efficient electrocatalyst for the hydrogen evolution reaction. Chem. Sci. 2017, 8, 2769–2775.

9

Xu, Y.; Wu, R.; Zhang, J. F.; Shi, Y. M.; Zhang, B. Anion- exchange synthesis of nanoporous FeP nanosheets as electrocatalysts for hydrogen evolution reaction. Chem. Commun. 2013, 49, 6656–6658.

10

Shi, Y. M.; Zhang, B. Recent advances in transition metal phosphide nanomaterials: Synthesis and applications in hydrogen evolution reaction. Chem. Soc. Rev. 2016, 45, 1529–1541.

11

Xiao, P.; Chen, W.; Wang, X. A review of phosphide-based materials for electrocatalytic hydrogen evolution. Adv. Energy Mater. 2015, 5, 1500985.

12

Qin, J. S.; Du, D. Y.; Guan, W.; Bo, X. J.; Li, Y. F.; Guo, L. P.; Su, Z. M.; Wang, Y. Y.; Lan, Y. Q.; Zhou, H. C. Ultrastable polymolybdate-based metal-organic frameworks as highly active electrocatalysts for hydrogen generation from water. J. Am. Chem. Soc. 2015, 137, 7169–7177.

13

Xia, B. Y.; Yan, Y.; Li, N.; Wu, H. B.; Lou, X. W.; Wang, X. A metal–organic framework-derived bifunctional oxygen electrocatalyst. Nat. Energy 2016, 1, 15006.

14

Wang, J.; Ge, X. M.; Liu, Z. L.; Thia, L.; Yan, Y.; Xiao, W.; Wang, X. Heterogeneous electrocatalyst with molecular cobalt ions serving as the center of active sites. J. Am. Chem. Soc. 2017, 139, 1878–1884.

15

Xu, X. M.; Chen, Y. B.; Zhou, W.; Zhu, Z. H.; Su, C.; Liu, M. L.; Shao, Z. P. A perovskite electrocatalyst for efficient hydrogen evolution reaction. Adv. Mater. 2016, 28, 6442– 6448.

16

Petrie, J. R.; Jeen, H.; Barron, S. C.; Meyer, T. L.; Lee, H. N. Enhancing perovskite electrocatalysis through strain tuning of the oxygen deficiency. J. Am. Chem. Soc. 2016, 138, 7252–7255.

17

Zhao, Y.; Li, X. F.; Yan, B.; Xiong, D. B.; Li, D. J.; Lawes, S.; Sun, X. L. Recent developments and understanding of novel mixed transition-metal oxides as anodes in lithium ion batteries. Adv. Energy Mater. 2016, 6, 1502175.

18

Li, Y. G.; Hasin, P.; Wu, Y. Y. NixCo3-xO4 nanowire arrays for electrocatalytic oxygen evolution. Adv. Mater. 2010, 22, 1926–1929.

19

Xie, X.; Lin, L.; Liu, R. -Y.; Jiang, Y. -F.; Zhu, Q.; Xu, A. -W. The synergistic effect of metallic molybdenum dioxide nanoparticle decorated graphene as an active electrocatalyst for an enhanced hydrogen evolution reaction. J. Mater. Chem. A 2015, 3, 8055–8061.

20

Chen, W.; Wang, H. T.; Li, Y. Z.; Liu, Y. Y.; Sun, J.; Lee, S.; Lee, J. -S.; Cui, Y. In situ electrochemical oxidation tuning of transition metal disulfides to oxides for enhanced water oxidation. ACS Cent. Sci. 2015, 1, 244–251.

21

Yin, J.; Zhou, P. P.; An, L.; Huang, L.; Shao, C. W.; Wang, J.; Liu, H. Y.; Xi, P. X. Self-supported nanoporous NiCo2O4 nanowires with cobalt-nickel layered oxide nanosheets for overall water splitting. Nanoscale 2016, 8, 1390–1400.

22

Wang, Y. C.; Zhou, T.; Jiang, K.; Da, P. M.; Peng, Z.; Tang, J.; Kong, B.; Cai, W. B.; Yang, Z. Q.; Zheng, G. F. Reduced mesoporous Co3O4 nanowires as efficient water oxidation electrocatalysts and supercapacitor electrodes. Adv. Energy Mater. 2014, 4, 1400696.

23

Bøjesen, E. D.; Jensen, K. M. Ø.; Tyrsted, C.; Mamakhel, A.; Andersen, H. L.; Reardon, H.; Chevalier, J.; Dippel, A. -C.; Iversen, B. B. The chemistry of ZnWO4 nanoparticle formation. Chem. Sci. 2016, 7, 6394–6406.

24

Zhang, L.; Wang, W. Z.; Jiang, D.; Gao, E. P.; Sun, S. M. Photoreduction of CO2 on BiOCl nanoplates with the assistance of photoinduced oxygen vacancies. Nano Res. 2015, 8, 821–831.

25

Sun, Y. F.; Liu, Q. H.; Gao, S.; Cheng, H.; Lei, F. C.; Sun, Z. H.; Jiang, Y.; Su, H. B.; Wei, S. Q.; Xie, Y. Pits confined in ultrathin cerium(IV) oxide for studying catalytic centers in carbon monoxide oxidation. Nat. Commun. 2013, 4, 2899.

26

Gao, S.; Jiao, X. C.; Sun, Z. T.; Zhang, W. H.; Sun, Y. F.; Wang, C. M.; Hu, Q. T.; Zu, X. L.; Yang, F.; Yang, S. Y. et al. Ultrathin Co3O4 layers realizing optimized CO2 electroreduction to formate. Angew. Chem., Int. Ed. 2016, 55, 698–702.

27

Bao, J.; Zhang, X. D.; Fan, B.; Zhang, J. J.; Zhou, M.; Yang, W. L.; Hu, X.; Wang, H.; Pan, B. C.; Xie, Y. Ultrathin spinel-structured nanosheets rich in oxygen deficiencies for enhanced electrocatalytic water oxidation. Angew. Chem., Int. Ed. 2015, 54, 7399–7404.

28

Cheng, F. Y.; Zhang, T. R.; Zhang, Y.; Du, J.; Han, X. P.; Chen, J. Enhancing electrocatalytic oxygen reduction on MnO2 with vacancies. Angew. Chem., Int. Ed. 2013, 52, 2474–2477.

29

Song, F.; Schenk, K.; Hu, X. L. A nanoporous oxygen evolution catalyst synthesized by selective electrochemical etching of perovskite hydroxide CoSn(OH)6 nanocubes. Energ. Environ. Sci. 2016, 9, 473–477.

30

Zhu, C. Z.; Fu, S. F.; Du, D.; Lin, Y. H. Facilely tuning porous NiCo2O4 nanosheets with metal valence-state alteration and abundant oxygen vacancies as robust electrocatalysts towards water splitting. Chemistry 2016, 22, 4000–4007.

31

Cheng, F. Y.; Chen, J. Lithium-air batteries: Something from nothing. Nat. Chem. 2012, 4, 962–963.

32

Ma, T. Y.; Zheng, Y.; Dai, S.; Jaroniec, M.; Qiao, S. Z. Mesoporous MnCo2O4 with abundant oxygen vacancy defects as high-performance oxygen reduction catalysts. J. Mater. Chem. A 2014, 2, 8676–8682.

33

Zhu, Y. L.; Zhou, W.; Yu, J.; Chen, Y. B.; Liu, M. L.; Shao, Z. P. Enhancing electrocatalytic activity of perovskite oxides by tuning cation deficiency for oxygen reduction and evolution reactions. Chem. Mater. 2016, 28, 1691–1697.

34

Wu, R.; Zhang, J. F.; Shi, Y. M.; Liu, D. L.; Zhang, B. Metallic WO2–carbon mesoporous nanowires as highly efficient electrocatalysts for hydrogen evolution reaction. J. Am. Chem. Soc. 2015, 137, 6983–6986.

35

Liu, X. J.; Liu, J. F.; Li, Y. P.; Li, Y. J.; Sun, X. M. Au/NiCo2O4 arrays with high activity for water oxidation. ChemCatChem 2014, 6, 2501–2506.

36

Song, Y.; Zhong, Q.; Tan, W. Y.; Pan, C. Effect of cobalt- substitution Sr2Fe1.5-xCoxMo0.5O6-δ for intermediate temperature symmetrical solid oxide fuel cells fed with H2–H2S. Electrochim. Acta 2014, 139, 13–20.

37

Zhang, Q.; Xu, Z. F.; Wang, L. F.; Gao, S. H.; Yuan, S. J. Structural and electromagnetic properties driven by oxygen vacancy in Sr2FeMoO6-δ double perovskite. J. Alloys Compd. 2015, 649, 1151–1155.

38

Jiang, S. S.; Liang, F. L.; Zhou, W.; Shao, Z. P. Hierarchical porous cobalt-free perovskite electrode for highly efficient oxygen reduction. J. Mater. Chem. 2012, 22, 16214–16218.

39

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

40

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane- wave basis set. Comp. Mater. Sci. 1996, 6, 15–50.

41

Huang, Z. -F.; Song, J. J.; Li, K.; Tahir, M.; Wang, Y. -T.; Pan, L.; Wang, L.; Zhang, X. W.; Zou, J. -J. Hollow cobalt- based bimetallic sulfide polyhedra for efficient all-pH-value electrochemical and photocatalytic hydrogen evolution. J. Am. Chem. Soc. 2016, 138, 1359–1365.

42

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

43

Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901.

44

Gao, X. H.; Zhang, H. X.; Li, Q. G.; Yu, X. G.; Hong, Z. L.; Zhang, X. W.; Liang, C. D.; Lin, Z. Hierarchical NiCo2O4 hollow microcuboids as bifunctional electrocatalysts for overall water-splitting. Angew. Chem., Int. Ed. 2016, 55, 6290–6294.

45

Jin, H. Y.; Wang, J.; Su, D. F.; Wei, Z. Z.; Pang, Z. F.; Wang, Y. In situ cobalt–cobalt oxide/N-doped carbon hybrids as superior bifunctional electrocatalysts for hydrogen and oxygen evolution. J. Am. Chem. Soc. 2015, 137, 2688–2694.

46

Wang, H. T.; Lee, H. -W.; Deng, Y.; Lu, Z. Y.; Hsu, P. -C.; Liu, Y. Y.; Lin, D. C.; Cui, Y. Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall water splitting. Nat. Commun. 2015, 6, 7261.

47

Yan, X. D.; Tian, L. H.; He, M.; Chen, X. B. Three- dimensional crystalline/amorphous Co/Co3O4 core/shell nanosheets as efficient electrocatalysts for the hydrogen evolution reaction. Nano Lett. 2015, 15, 6015–6021.

48

Feng, J. -X.; Ding, L. -X.; Ye, S. -H.; He, X. -J.; Xu, H.; Tong, Y. -X.; Li, G. -R. Co(OH)2@PANI hybrid nanosheets with 3D networks as high-performance electrocatalysts for hydrogen evolution reaction. Adv. Mater. 2015, 27, 7051–7057.

49

Golvano-Escobal, I.; Suriñach, S.; Baró, M. D.; Pané, S.; Sort, J.; Pellicer, E. Electrodeposition of sizeable and compositionally tunable rhodium-iron nanoparticles and their activity toward hydrogen evolution reaction. Electrochim. Acta 2016, 194, 263–275.

50

Shen, L. F.; Che, Q.; Li, H. S.; Zhang, X. G. Mesoporous NiCo2O4 nanowire arrays grown on carbon textiles as binder- free flexible electrodes for energy storage. Adv. Funct. Mater. 2014, 24, 2630–2637.

51

Sun, Y. F.; Gao, S.; Lei, F. C.; Liu, J. W.; Liang, L.; Xie, Y. Atomically-thin non-layered cobalt oxide porous sheets for highly efficient oxygen-evolving electrocatalysts. Chem. Sci. 2014, 5, 3976–3982.

52

Liang, L.; Li, K.; Xiao, C.; Fan, S. J.; Liu, J.; Zhang, W. S.; Xu, W. H.; Tong, W.; Liao, J. Y.; Zhou, Y. Y. et al. Vacancy associates-rich ultrathin nanosheets for high performance and flexible nonvolatile memory device. J. Am. Chem. Soc. 2015, 137, 3102–3108.

53

Lu, X. -F.; Gu, L. -F.; Wang, J. -W.; Wu, J. -X.; Liao, P. -Q.; Li, G. -R. Bimetal-organic framework derived CoFe2O4/C porous hybrid nanorod arrays as high-performance electrocatalysts for oxygen evolution reaction. Adv. Mater. 2017, 29, 1604437.

54

Pan, Y. -X.; Sun, Z. -Q.; Cong, H. -P.; Men, Y. -L.; Xin, S.; Song, J.; Yu, S. -H. Photocatalytic CO2 reduction highly enhanced by oxygen vacancies on Pt-nanoparticle-dispersed gallium oxide. Nano Res. 2016, 9, 1689–1700.

Nano Research
Pages 603-613
Cite this article:
Liu D, Zhang C, Yu Y, et al. Hydrogen evolution activity enhancement by tuning the oxygen vacancies in self-supported mesoporous spinel oxide nanowire arrays. Nano Research, 2018, 11(2): 603-613. https://doi.org/10.1007/s12274-017-1670-8

772

Views

164

Crossref

N/A

Web of Science

164

Scopus

4

CSCD

Altmetrics

Received: 26 March 2017
Revised: 04 May 2017
Accepted: 07 May 2017
Published: 10 August 2017
© Tsinghua University Press and Springer-Verlag GmbH Germany 2017
Return