Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Cyclic penta-twinned noble metal nanocrystals exhibit promising properties due to their unique geometric and electronic structures. However, the controlled synthesis of cyclic penta-twinned nanostructures, especially of noble metals with a high cohesive energy (e.g., Rh), is very difficult, and the corresponding growth mechanism is not fully understood. Herein, we report a facile one-pot hydrothermal approach for the synthesis of cyclic penta-twinned Rh icosahedral nanocrystals. It was found that apart from regulating the surface free energy by changing the concentration or category of the capping agents, the solvent might influence the adsorption ability of the surfactant on the Rh crystal surface, which results in a change in the surface free energy and thus allows the formation of Rh cyclic penta-twinned nanostructures. In addition, due to their unique electronic and geometric structures, the Rh icosahedral nanocrystals exhibit superior catalytic activity and stability for the electrooxidation of ethanol as compared to single-crystal Rh tetrahedral nanocrystals and commercial Rh black.
Niu, W. X.; Xu, G. B. Crystallographic control of noble metal nanocrystals. Nano Today 2011, 6, 265–285.
He, D. S.; He, D. P.; Wang, J.; Lin, Y.; Yin, P. Q.; Hong, X.; Wu, Y. E.; Li, Y. D. Ultrathin icosahedral Pt-enriched nanocage with excellent oxygen reduction reaction activity. J. Am. Chem. Soc. 2016, 13, 1494–1497.
Wu, J. B.; Yang, H. Platinum-based oxygen reduction electrocatalysts. Acc. Chem. Res. 2013, 46, 1848–1857.
Wang, L. B.; Zhao, S. T.; Liu, C. X.; Li, C.; Li, X.; Li, H. L.; Wang, Y. C.; Ma, C.; Li, Z. Y.; Zeng, J. Aerobic oxidation of cyclohexane on catalysts based on twinned and single- crystal Au75Pd25 bimetallic nanocrystals. Nano Lett. 2015, 15, 2875–2880.
Hong, X.; Tan, C. L.; Chen, J. Z.; Xu, Z. C.; Zhang, H. Synthesis, properties and applications of one- and two- dimensional gold nanostructures. Nano Res. 2014, 8, 40–55.
Lin, Z. Q.; Chen, W. L.; Jiang, Y.; Bian, T.; Zhang, H.; Wu, J. B.; Wang Y.; Yang D. R. Facile synthesis of Ru-decorated Pt cubes and icosahedra as highly active electrocatalysts for methanol oxidation. Nanoscale 2016, 8, 12812–12818.
Huang, H.; Bao S. X.; Chen, Q. L.; Yang, Y. N.; Jiang, Z. Y.; Kuang, Q.; Wu, X. Y.; Xie Z. X.; Zheng, L. S. Novel hydrogen storage properties of palladium nanocrystals activated by a pentagonal cyclic twinned structure. Nano Res. 2015, 8, 2698–2705.
Tang, Y.; Ouyang, M. Tailoring properties and functionalities of metal nanoparticles through crystallinity engineering. Nat. Mater. 2007, 6, 754–759.
Wu, J. B.; Qi, L.; You, H. J.; Gross, A.; Li J.; Yang, H. Icosahedral platinum alloy nanocrystals with enhanced electrocatalytic activities. J. Am. Chem. Soc. 2012, 134, 11880–11883.
Murshid, N.; Kitaev, V. Role of poly(vinylpyrrolidone) (PVP) and other sterically protecting polymers in selective stabilization of {111} and {100} facets in pentagonally twinned silver nanoparticles. Chem. Commun. 2014, 50, 1247–1249.
Langille, M. R.; Zhang, J.; Personick, M. L.; Li, S. Y.; Mirkin, C. A. Stepwise evolution of spherical seeds into 20-fold twinned icosahedra. Science 2012, 337, 954–957.
Zhang, S. H.; Jiang, Z. Y.; Xie, Z. X.; Xu, X.; Huang, R. B.; Zheng, L. S. Growth of silver nanowires from solutions: A cyclic penta-twinned-crystal growth mechanism. J. Phys. Chem. B 2005, 109, 9416–9421.
Mazumder, V.; Sun, S. H. Oleylamine-mediated synthesis of Pd nanoparticles for catalytic formic acid oxidation. J. Am. Chem. Soc. 2009, 131, 4588–4589.
Wang Y.; Peng, H. C.; Liu, J. Y.; Huang C. Z.; Xia, Y. N. Use of reduction rate as a quantitative knob for controlling the twin structure and shape of palladium nanocrystals. Nano Lett. 2015, 15, 1445–1450.
Zhou, W.; Wu J. B.; Yang, H. Highly uniform platinum icosahedra made by hot injection-assisted GRAILS method. Nano Lett. 2013, 13, 2870–2874.
Niu, Z. Q.; Peng, Q.; Gong, M.; Rong, H. P.; Li, Y. D. Oleylamine-mediated shape evolution of palladium nanocrystals. Angew. Chem., Int. Ed. 2011, 50, 6315–6319.
Zhu, W.; Yin, A. X.; Zhang, Y. W.; Yan, C. H. Highly shape-selective synthesis of monodispersed fivefold twinned platinum nanodecahedrons and nanoicosahedrons. Chemistry 2012, 18, 12222–12226.
Sun, X. H.; Jiang, K. Z.; Zhang, N.; Guo, S. J.; Huang, X. Q. Crystalline control of {111} bounded Pt3Cu nanocrystals: Multiply-twinned Pt3Cu icosahedra with enhanced electrocatalytic properties. ACS Nano 2015, 9, 7634–7640.
Bao, S. X.; Zhang, J. W.; Jiang, Z. Y.; Zhou, X.; Xie, Z. X. Understanding the formation of pentagonal cyclic twinned crystal from the solvent dependent assembly of Au nanocrystals into their colloidal crystals. J. Phys. Chem. Lett. 2013, 4, 3440–3444.
Zhang, H.; Xia, X. H.; Li, W. Y.; Zeng, J.; Dai, Y. Q.; Yang D. Q.; Xia, Y. N. Facile synthesis of five-fold twinned, starfish-like rhodium nanocrystals by eliminating oxidative etching with a chloride-free precursor. Angew. Chem., Int. Ed. 2010, 49, 5296–5300.
Biacchi, A. J.; Schaak, R. E. Ligand-induced fate of embryonic species in the shape-controlled synthesis of rhodium nanoparticles. ACS Nano 2015, 9, 1707–1720.
Choi, S. I.; Lee, S. R.; Ma, C.; Oliy, B.; Luo, M.; Chi, M. F.; Xia, Y. N. Facile synthesis of rhodium icosahedra with controlled sizes up to 12 nm. ChemNanoMat 2016, 2, 61–66.
Xie, S. F.; Liu, X. Y.; Xia, Y. N. Shape-controlled syntheses of rhodium nanocrystals for the enhancement of their catalytic properties. Nano Res. 2015, 8, 82–96.
Zhang, Z. C.; Hui, J. F.; Liu, Z. C.; Zhang, X.; Zhuang, J.; Wang, X. Glycine-mediated syntheses of Pt concave nanocubes with high-index {hk0} facets and their enhanced electrocatalytic activities. Langmuir 2012, 28, 14845–14848.
Tao, A. R.; Habas, S.; Yang, P. D. Shape control of colloidal metal nanocrystals. Small 2008, 4, 310–325.
Xia, Y. N.; Xiong, Y. J.; Lim, B.; Skrabalak, S. E. Shape- controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angew. Chem., Int. Ed. 2009, 48, 60–103.
Zhang, Z. T.; Zhao, B.; Hu, L. M. PVP protective mechanism of ultrafine silver powder synthesized by chemical reduction processes. J. Solid State Chem. 1996, 121, 105–110.
Borodko, Y.; Habas, S. E.; Koebel, M.; Yang, P. D.; Frei H.; Somorjai, G. A. Probing the interaction of poly(vinylpyrrolidone) with platinum nanocrystals by UV-Raman and FTIR. J. Phys. Chem. B 2006, 110, 23052–23059.
Kedia, A.; Kumar, P. S. Solvent-adaptable poly(vinylpyrrolidone) binding induced anisotropic shape control of gold nanostructures. J. Phys. Chem. C 2012, 116, 23721–23728.
Kim, S. M.; Qadir, K.; Seo, B.; Jeong, H. Y.; Joo, S. H.; Terasaki, O.; Park, J. Y. Nature of Rh oxide on Rh nanoparticles and its effect on the catalytic activity of CO oxidation. Catal. Lett. 2013, 143, 1153–1161.
Huang, X. Q.; Zhao, Z. P.; Chen, Y.; Chiu, C. Y.; Ruan, L. Y.; Liu, Y.; Li, M. F.; Duan X. F.; Huang, Y. High density catalytic hot spots in ultrafine wavy nanowires. Nano Lett. 2014, 14, 3887–3894.
Yu, N. F.; Tian, N.; Zhou, Z. Y.; Huang, L.; Xiao, J.; Wen, Y. H.; Sun, S. G. Electrochemical synthesis of tetrahexahedral rhodium nanocrystals with extraordinarily high surface energy and high electrocatalytic activity. Angew. Chem., Int. Ed. 2014, 53, 5097–5101.
Lebedeva, N. P.; Koper, M. T. M.; Feliu, J. M.; van Santen, R. A. Role of crystalline defects in electrocatalysis: mechanism and kinetics of CO adlayer oxidation on stepped platinum electrodes. J. Phys. Chem. B 2002, 106, 12938–12947.
Hara, M.; Linke, U.; Wandlowski, T. Preparation and electrochemical characterization of palladium single crystal electrodes in 0.1M H2SO4 and HClO4: Part I. Low-index phases. Electrochim. Acta 2007, 52, 5733–5748.
Housmans, T. H. M.; Feliu, J. M.; Koper, M. T. M. CO oxidation on stepped Rh [n (111) × (111)] single crystal electrodes: A voltarnmetric study. J. Electroanal. Chem. 2004, 572, 79–91.
Zhang, J. W.; Zhang, L.; Xie, S. F.; Kuang, Q.; Han, X. G.; Xie, Z. X.; Zheng, L. S. Synthesis of concave palladium nanocubes with high-index surfaces and high electrocatalytic activities. Chemistry 2011, 17, 9915–9919.
Jiang, Y. Q.; Su, J. Y.; Yang, Y. N.; Jia, Y. Y.; Chen, Q. L.; Xie, Z. X.; Zheng, L. S. A facile surfactant-free synthesis of Rh flower-like nanostructures constructed from ultrathin nanosheets and their enhanced catalytic properties. Nano Res. 2016, 9, 849–856.
Sakai, M.; Ueda, M.; Miyaura, N. Rhodium-catalyzed addition of organoboronic acids to aldehydes. Angew. Chem., Int. Ed. 1998, 37, 3279–3281.
Glöckler, J.; Klützke, S.; Meyer-Zaika, W.; Reller, A.; García- García, F. J.; Strehblow, H. H.; Keller, P.; Rentschler, E.; Kläui, W. With phosphinophosphonic acids to nanostructured, water-soluble, and catalytically active rhodium clusters. Angew. Chem., Int. Ed. 2007, 46, 1164–1167.
Yuan, Q.; Zhou, Z. Y.; Zhuang, J.; Wang, X. Seed displacement, epitaxial synthesis of Rh/Pt bimetallic ultrathin nanowires for highly selective oxidizing ethanol to CO2. Chem. Mater. 2010, 22, 2395–2402.
Zahmakiran, M.; Román-Leshkov, Y.; Zhang, Y. Rhodium(0) nanoparticles supported on nanocrystalline hydroxyapatite: highly effective catalytic system for the solvent-free hydrogenation of aromatics at room temperature. Langmuir 2012, 28, 60–64.
Duan, H. H.; Yan, N.; Yu, R.; Chang, C. R.; Zhou, G.; Hu, H. S.; Rong, H. P.; Niu, Z. Q.; Mao, J. J.; Asakura, H. et al. Ultrathin rhodium nanosheets. Nat. Commun. 2014, 5, 3093.