Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
One-dimensional hollow nanostructures have potential applications in many fields and can be fabricated using various methods. Herein, a selective-oxidation route for the synthesis of unique TexSey nanotubes (STNTs) with a controlled morphology using TexSey@Se core–shell nanowires (TSSNWs) as a template is reported. Because of the lower redox potential of TeO2/Te compared to that of H2SeO3/Se, the Te in TSSNWs can be preferentially oxidized by an appropriate oxidant of HNO2 to form STNTs. The inner diameters and wall thicknesses of the STNTs can be tuned by modulating the core diameters and shell thicknesses of the TSSNWs, respectively. The STNTs can be assembled into a monolayer composed of well-arranged nanotubes using the Langmuir–Blodgett technique. A device based on films stacked with 10 STNT monolayers was fabricated to investigate the photocoductivity of the STNTs. The STNTs exhibited a good photoresponse over the whole ultraviolet–visible spectrum, revealing their potential for application in optoelectronic devices.
Wang, X. J.; Feng, J.; Bai, Y. C.; Zhang, Q.; Yin, Y. D. Synthesis, properties, and applications of hollow micro-/ nanostructures. Chem. Rev. 2016, 116, 10983-11060.
Zhang, L.; Roling, L. T.; Wang, X.; Vara, M.; Chi, M. F.; Liu, J. Y.; Choi, S. I.; Park, J.; Herron, J. A.; Xie, Z. X. et al. Platinum-based nanocages with subnanometer-thick walls and well-defined, controllable facets. Science 2015, 349, 412-416.
Cui, C. H.; Yu, S. H. Engineering interface and surface of noble metal nanoparticle nanotubes toward enhanced catalytic activity for fuel cell applications. Acc. Chem. Res. 2013, 46, 1427-1437.
Han, L. -N.; Ye, T. -N.; Lv, L. -B.; Wang, K. -X.; Wei, X.; Li, X. -H.; Chen, J. -S. Supramolecular nano-assemblies with tailorable surfaces: Recyclable hard templates for engineering hollow nanocatalysts. Sci. China Mater. 2014, 57, 7-12.
Niu, C. J.; Meng, J. S.; Wang, X. P.; Han, C. H.; Yan, M. Y.; Zhao, K. N.; Xu, X. M.; Ren, W. H.; Zhao, Y. L.; Xu, L. et al. General synthesis of complex nanotubes by gradient electrospinning and controlled pyrolysis. Nat. Commun. 2015, 6, 7402.
Wang, H. Q.; Miyauchi, M.; Ishikawa, Y.; Pyatenko, A.; Koshizaki, N.; Li, Y.; Li, L.; Li, X. Y.; Bando, Y.; Golberg, D. Single-crystalline rutile TiO2 hollow spheres: Room- temperature synthesis, tailored visible-light-extinction, and effective scattering layer for quantum dot-sensitized solar cells. J. Am. Chem. Soc. 2011, 133, 19102-19109.
Zhang, J.; Liu, X. H.; Neri, G.; Pinna, N. Nanostructured materials for room-temperature gas sensors. Adv. Mater. 2016, 28, 795-831.
Wang, X.; Liao, M. Y.; Zhong, Y. T.; Zheng, J. Y.; Tian, W.; Zhai, T. Y.; Zhi, C. Y.; Ma, Y.; Yao, J. N.; Bando, Y. et al. ZnO hollow spheres with double-yolk egg structure for high-performance photocatalysts and photodetectors. Adv. Mater. 2012, 24, 3421-3415.
An, K.; Hyeon, T. Synthesis and biomedical applications of hollow nanostructures. NanoToday 2009, 4, 359-373.
Tenne, R.; Redlich, M. Recent progress in the research of inorganic fullerene-like nanoparticles and inorganic nanotubes. Chem. Soc. Rev. 2010, 39, 1423-1434.
Lee, K.; Mazare, A.; Schmuki, P. One-dimensional titanium dioxide nanomaterials: Nanotubes. Chem. Rev. 2014, 114, 9385-9454.
Levi, R.; Bitton, O.; Leitus, G.; Tenne, R.; Joselevich, E. Field-effect transistors based on WS2 nanotubes with high current-carrying capacity. Nano Lett. 2013, 13, 3736-3741.
Yan, R. X.; Liang, W. J.; Fan, R.; Yang, P. D. Nanofluidic diodes based on nanotube heterojunctions. Nano Lett. 2009, 9, 3820-3825.
Zhang, S. -Y.; Fang, C. -X.; Tian, Y. -P.; Zhu, K. -R.; Jin, B. -K.; Shen, Y. -H.; Yang, J. -X. Synthesis and characterization of hexagonal CuSe nanotubes by templating against trigonal Se nanotubes. Cryst. Growth Des. 2006, 6, 2809-2813.
Huang, T.; Qi, L. M. Controlled synthesis of PbSe nanotubes by solvothermal transformation from selenium nanotubes. Nanotechnology 2009, 20, 025606.
Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56-58.
Shulaker, M. M.; Hills, G.; Patil, N.; Wei, H.; Chen, H. Y.; Wong, H. S. P.; Mitra, S. Carbon nanotube computer. Nature 2013, 501, 526-530.
Gao, C. B.; Zhang, Q.; Lu, Z. D.; Yin, Y. D. Templated synthesis of metal nanorods in silica nanotubes. J. Am. Chem. Soc. 2011, 133, 19706-19709.
Rao, C. N. R.; Govindaraj, A. Synthesis of inorganic nanotubes. Adv. Mater. 2009, 21, 4208-4233.
Bae, C.; Yoo, H.; Kim, S.; Lee, K.; Kim, J.; Sung, M. A.; Shin, H. Template-directed synthesis of oxide nanotubes: Fabrication, characterization, and applications. Chem. Mater. 2008, 20, 756-767.
Park, M. H.; Cho, Y.; Kim, K.; Kim, J.; Liu, M. L.; Cho, J. Germanium nanotubes prepared by using the kirkendall effect as anodes for high-rate lithium batteries. Angew. Chem., Int. Ed. 2011, 50, 9647-9650.
Jin Fan, H.; Knez, M.; Scholz, R.; Nielsch, K.; Pippel, E.; Hesse, D.; Zacharias, M.; Gösele, U. Monocrystalline spinel nanotube fabrication based on the kirkendall effect. Nat. Mater. 2006, 5, 627-631.
Amani Hamedani, H.; Khaleel, J. A.; Dahmen, K. -H.; Garmestani, H. Surface controlled growth of thin-film strontium titanate nanotube arrays on silicon. Cryst. Growth Des. 2014, 14, 4911-4919.
Abdullayev, E.; Joshi, A.; Wei, W. B.; Zhao, Y. F.; Lvov, Y. Enlargement of halloysite clay nanotube lumen by selective etching of aluminum oxide. ACS Nano 2012, 6, 7216-7226.
Zhang, R. F.; Tian, X. K.; Ma, L. L.; Yang, C.; Zhou, Z. X.; Wang, Y. X.; Wang, S. H. Visible-light-responsive t-Se nanorod photocatalysts: Synthesis, properties, and mechanism. RSC Adv. 2015, 5, 45165-45171.
Chiou, Y. -D.; Hsu, Y. -J. Room-temperature synthesis of single-crystalline Se nanorods with remarkable photocatalytic properties. Appl. Catal. B-Environ. 2011, 105, 211-219.
Lin, S. Q.; Li, W.; Chen, Z. W.; Shen, J. W.; Ge, B. H.; Pei, Y. Z. Tellurium as a high-performance elemental thermoelectric. Nat. Commun. 2016, 7, 10287.
Dun, C. C.; Hewitt, C. A.; Huang, H. H.; Montgomery, D. S.; Xu, J. W.; Carroll, D. L. Flexible thermoelectric fabrics based on self-assembled tellurium nanorods with a large power factor. Phys. Chem. Chem. Phys. 2015, 17, 8591-8595.
Beyer, W.; Mell, H.; Stuke, J. Conductivity and thermoelectric power of trigonal SexTe1-x single crystals. Phys. Status Solidi B 1971, 45, 153-162.
Abdullayev, G. B.; Dzhalilov, N. Z.; Aliyev, G. M. On heat conductivity and thermoelectromotive force of hexagonal selenium single crystals. Phys. Lett. 1966, 23, 217-219.
Ozgur, E.; Aktas, O.; Kanik, M.; Yaman, M.; Bayindir, M. Macroscopic assembly of indefinitely long and parallel nanowires into large area photodetection circuitry. Nano Lett. 2012, 12, 2483-2487.
Wang, Y.; Tang, Z.; Podsiadlo, P.; Elkasabi, Y.; Lahann, J.; Kotov, N. A. Mirror-like photoconductive layer-by-layer thin films of Te nanowires: The fusion of semiconductor, metal, and insulator properties. Adv. Mater. 2006, 18, 518-522.
Luo, L. -B.; Yang, X. -B.; Liang, F. -X.; Jie, J. -S.; Li, Q.; Zhu, Z. -F.; Wu, C. -Y.; Yu, Y. -Q.; Wang, L. Transparent and flexible selenium nanobelt-based visible light photodetector. CrystEngComm 2012, 14, 1942-1497.
Liu, J. W.; Zhu, J. H.; Zhang, C. L.; Liang, H. W.; Yu, S. H. Mesostructured assemblies of ultrathin superlong tellurium nanowires and their photoconductivity. J. Am. Chem. Soc. 2010, 132, 8945-8952.
Hu, K.; Chen, H. Y.; Jiang, M. M.; Teng, F.; Zheng, L. X.; Fang, X. S. Broadband photoresponse enhancement of a high-performance t-Se microtube photodetector by plasmonic metallic nanoparticles. Adv. Funct. Mater. 2016, 26, 6641-6648.
Zhong, B. N.; Fei, G. T.; Fu, W. B.; Gong, X. X.; Gao, X. D.; Zhang, L. D. Solvothermal synthesis, stirring-assisted assembly and photoelectric performance of Te nanowires. Phys. Chem. Chem. Phys. 2016, 18, 32691-32696.
Liu, L. L.; Hou, Y. Y.; Wu, X. W.; Xiao, S. Y.; Chang, Z.; Yang, Y. Q.; Wu, Y. P. Nanoporous selenium as a cathode material for rechargeable lithium-selenium batteries. Chem. Commun. 2013, 49, 11515-11517.
Ding, N.; Chen, S. -F.; Geng, D. -S.; Chien, S. -W.; An, T.; Hor, T. S. A.; Liu, Z. -L.; Yu, S. -H.; Zong, Y. Tellurium@ ordered macroporous carbon composite and free-standing tellurium nanowire mat as cathode materials for rechargeable lithium-tellurium batteries. Adv. Energy Mater. 2015, 5, 1401999.
Qian, H. S.; Yu, S. H.; Gong, J. Y.; Luo, L. B.; Fei, L. F. High-quality luminescent tellurium nanowires of several nanometers in diameter and high aspect ratio synthesized by a poly (vinyl pyrrolidone)-assisted hydrothermal process. Langmuir 2006, 22, 3830-3835.
Liu, J. -W.; Xu, J.; Hu, W.; Yang, J. -L.; Yu, S. -H. Systematic synthesis of tellurium nanostructures and their optical properties: From nanoparticles to nanorods, nanowires, and nanotubes. ChemNanoMat 2016, 2, 167-170.
Gates, B.; Yin, Y. D.; Xia, Y. N. A solution-phase approach to the synthesis of uniform nanowires of crystalline selenium with lateral dimensions in the range of 10-30 nm. J. Am. Chem. Soc. 2000, 122, 12582-12583.
Liu, L. P.; Peng, Q.; Li, Y. D. Preparation of monodisperse Se colloid spheres and Se nanowires using Na2SeSO3 as precursor. Nano Res. 2010, 1, 403-411.
Wang, Z. H.; Wang, L. L.; Wang, H. PEG-mediated hydrothermal growth of single-crystal tellurium nanotubes. Cryst. Growth Des. 2008, 8, 4415-4419.
Xi, G. C.; Xiong, K.; Zhao, Q. B.; Zhang, R.; Zhang, H. B.; Qian, Y. T. Nucleation-dissolution-recrystallization: A new growth mechanism for t-selenium nanotubes. Cryst. Growth Des. 2006, 6, 577-582.
Ma, Y.; Qi, L.; Ma, J.; Cheng, H. Micelle-mediated synthesis of single-crystalline selenium nanotubes. Adv. Mater. 2004, 16, 1023-1026.
Miszta, K.; Brescia, R.; Prato, M.; Bertoni, G.; Marras, S.; Xie, Y.; Ghosh, S.; Kim, M. R.; Manna, L. Hollow and concave nanoparticles via preferential oxidation of the core in colloidal core/shell nanocrystals. J. Am. Chem. Soc. 2014, 136, 9061-9069.
Xie, S. F.; Lu, N.; Xie, Z. X.; Wang, J. G.; Kim, M. J.; Xia, Y. N. Synthesis of Pd-Rh core-frame concave nanocubes and their conversion to Rh cubic nanoframes by selective etching of the Pd cores. Angew. Chem., Int. Ed. 2012, 51, 10266-10270.
Ye, H. H.; Wang, Q. X.; Catalano, M.; Lu, N.; Vermeylen, J.; Kim, M. J.; Liu, Y. Z.; Sun, Y. G.; Xia, X. H. Ru nanoframes with an fcc structure and enhanced catalytic properties. Nano Lett. 2016, 16, 2812-2817.
Gan, L.; Yang, M. J.; Ke, X.; Cui, G. F.; Chen, X. D.; Gupta, S.; Kellogg, W.; Higgins, D.; Wu, G. Mesoporous Ag nanocubes synthesized via selectively oxidative etching at room temperature for surface-enhanced Raman spectroscopy. Nano Res. 2015, 8, 2351-2362.
Jiang, X.; Mayers, B.; Herricks, T.; Xia, Y. Direct synthesis of Se@CdSe nanocables and CdSe nanotubes by reacting cadmium salts with Se nanowires. Adv. Mater. 2003, 15, 1740-1743.
Zeng, H. B.; Cai, W. P.; Liu, P. S.; Xu, X. X.; Zhou, H. J.; Klingshirn, C.; Kalt, H. ZnO-based hollow nanoparticles by selective etching: Elimination and reconstruction of metal- semiconductor interface, improvement of blue emission and photocatalysis. ACS Nano 2008, 2, 1661-1670.
Hu, Z. -W.; Xu, L.; Yang, Y.; Yao, H. -B.; Zhu, H. -W.; Hu, B. -C.; Yu, S. -H. A general chemical transformation route to two-dimensional mesoporous metal selenide nanomaterials by acidification of a ZnSe-amine lamellar hybrid at room temperature. Chem. Sci. 2016, 7, 4276-4283.
Yang, Y.; Wang, K.; Liang, H. W.; Liu, G. Q.; Feng, M.; Xu, L.; Liu, J. W.; Wang, J. L.; Yu, S. H. A new generation of alloyed/multimetal chalcogenide nanowires by chemical transformation. Sci. Adv. 2015, 1, e1500714.
Lin, Z. -H.; Yang, Z. S.; Chang, H. -T. Preparation of fluorescent tellurium nanowires at room temperature. Cryst. Growth Des. 2008, 8, 351-357.
Song, T. J.; Cheng, H. J.; Fu, C. J.; He, B.; Li, W. L.; Xu, J. F.; Tang, Y.; Yang, S. Y.; Zou, B. S. Influence of the active layer nanomorphology on device performance for ternary PbSxSe1-x quantum dots based solution-processed infrared photodetector. Nanotechnology 2016, 27, 165202.
Yu, J.; Xu, C. Y.; Li, Y.; Zhou, F.; Chen, X. S.; Hu, P. A.; Zhen, L. Ternary SnS2-xSex alloys nanosheets and nanosheet assemblies with tunable chemical compositions and band gaps for photodetector applications. Sci. Rep. 2015, 5, 17109.
Yuan, X.; Tang, L.; Wang, P.; Chen, Z. G.; Zou, Y. C.; Su, X. F.; Zhang, C.; Liu, Y. W.; Wang, W. Y.; Liu, C. et al. Wafer-scale arrayed p-n junctions based on few-layer epitaxial GaTe. Nano Res. 2015, 8, 3332-3341.
Chen, H. Y.; Liu, H.; Zhang, Z. M.; Hu, K.; Fang, X. S. Nanostructured photodetectors: From ultraviolet to terahertz. Adv. Mater. 2016, 28, 403-433.
Wang, J. J.; Wang, Y. Q.; Cao, F. F.; Guo, Y. G.; Wan, L. J. Synthesis of monodispersed wurtzite structure CuInSe2 nanocrystals and their application in high-performance organic-inorganic hybrid photodetectors. J. Am. Chem. Soc. 2010, 132, 12218-12221.
Liang, H. W.; Liu, S.; Wu, Q. S.; Yu, S. H. An efficient templating approach for synthesis of highly uniform CdTe and PbTe nanowires. Inorg. Chem. 2009, 48, 4927-4933.
Gates, B.; Wu, Y. Y.; Yin, Y. D.; Yang, P. D.; Xia, Y. N. Single-crystalline nanowires of Ag2Se can be synthesized by templating against nanowires of trigonal Se. J. Am. Chem. Soc. 2001, 123, 11500-11501.
Finefrock, S. W.; Zhang, G. Q.; Bahk, J. H.; Fang, H. Y.; Yang, H. R.; Shakouri, A.; Wu, Y. Structure and thermoelectric properties of spark plasma sintered ultrathin PbTe nanowires. Nano Lett. 2014, 14, 3466-3473.