AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Gold nanoshells: Contrast agents for cell imaging by cardiovascular optical coherence tomography

Jie Hu1,§Francisco Sanz-Rodríguez1,2,3,§Fernando Rivero4Emma Martín Rodríguez1,2( )Río Aguilar Torres4Dirk H. Ortgies1,2José García Solé1Fernando Alfonso4Daniel Jaque1,2
Fluorescence Imaging GroupDepartamento de Física de MaterialesInstituto Nicolás CabreraFacultad de CienciasUniversidad Autónoma de MadridMadrid28049Spain
Instituto Ramón y Cajal de Investigación SanitariaHospital Ramón y CajalMadrid28034Spain
Departamento de BiologíaUniversidad Autónoma de MadridMadrid28049Spain
Cardiology DepartmentHospital Universitario de la PrincesaIIS-IPUniversidad Autónoma de MadridMadrid28006Spain

§ Jie Hu and Francisco Sanz-Rodríguez contributed equally to the work.

Show Author Information

Graphical Abstract

Abstract

Optical coherence tomography (OCT) has gained considerable attention in interventional cardiovascular medicine and is currently used in clinical settings to assess atherosclerotic lesions and to optimize stent placement. Artery imaging at the cellular level constitutes the first step towards cardiovascular molecular imaging, which represents a major advance in the development of personalized noninvasive therapies. In this work, we demonstrate that cardiovascular OCT can be used to detect individual cells suspended in biocompatible fluids. Importantly, the combination of this catheter-based clinical technique with gold nanoshells (GNSs) as intracellular contrast agents led to a substantial enhancement in the backscattered signal produced by individual cells. This cellular contrast enhancement was attributed to the large backscattering cross-section of GNSs at the OCT laser wavelength (1, 300 nm). A simple intensity analysis of OCT cross-sectional images of suspended cells makes it possible to identify the sub-population of living cells that successfully incorporated GNSs. The generalizability of this method was demonstrated using two different cell lines (HeLa and Jurkat cells). This work provides novel insights into cardiovascular molecular imaging using specifically modified GNSs.

Electronic Supplementary Material

Download File(s)
nr-11-2-676_ESM.pdf (1.2 MB)

References

1

Fercher, A. F.; Drexler, W.; Hitzenberger, C. K.; Lasser, T. Optical coherence tomography-principles and applications. Rep. Prog. Phys. 2003, 66, 239–303.

2

Alfonso, F.; Sandoval, J.; Cárdenas, A.; Medina, M.; Cuevas, C.; Gonzalo, N. Optical coherence tomography: From research to clinical application. Minerva Med. 2012, 103, 441–464.

3

Ashok, P. C.; Praveen, B. B.; Bellini, N.; Riches, A.; Dholakia, K.; Herrington, C. S. Multi-modal approach using Raman spectroscopy and optical coherence tomography for the discrimination of colonic adenocarcinoma from normal colon. Biomed. Opt. Express 2013, 4, 2179–2186.

4

Fujimoto, J. G. Optical coherence tomography for ultrahigh resolution in vivo imaging. Nat. Biotechnol. 2003, 21, 1361–1367.

5

Mattison, S. P.; Kim, W.; Park, J.; Applegate, B. E. Molecular imaging in optical coherence tomography. Curr. Mol. Imaging 2014, 3, 88–105.

6

Zysk, A. M.; Nguyen, F. T.; Oldenburg, A. L.; Marks, D. L.; Boppart, S. A. Optical coherence tomography: A review of clinical development from bench to bedside. J. Biomed. Opt. 2007, 12, 051403.

7

Bouma, B. E.; Yun, S. -H.; Vakoc, B. J.; Suter, M. J.; Tearney, G. J. Fourier-domain optical coherence tomography: Recent advances toward clinical utility. Curr. Opin. Biotechnol. 2009, 20, 111–118.

8
Kennedy, B. F.; Kennedy, K. M.; Oldenburg, A. L.; Adie, S. G.; Boppart, S. A.; Sampson, D. D. Optical coherence elastography. In Optical Coherence Tomography: Technology and Applications. Drexler, W.; Fujimoto, J. G., Eds.; Springer International Publishing: Switzerland, 2015; pp1007–1054.https://doi.org/10.1007/978-3-319-06419-2_33
9

Alfonso, F.; Dutary, J.; Paulo, M.; Gonzalo, N.; Pérez- Vizcayno, M. J.; Jiménez-Quevedo, P.; Escaned, J.; Bañuelos, C.; Hernández, R.; Macaya, C. Combined use of optical coherence tomography and intravascular ultrasound imaging in patients undergoing coronary interventions for stent thrombosis. Heart 2012, 98, 1213–1220.

10

Bezerra, H. G.; Costa, M. A.; Guagliumi, G.; Rollins, A. M.; Simon, D. I. Intracoronary optical coherence tomography: A comprehensive review: Clinical and research applications. JACC: Cardiovasc. Interv. 2009, 2, 1035–1046.

11

Prati, F.; Stazi, F.; Dutary, J.; La Manna, A.; Di Giorgio, A.; Pawlosky, T.; Gonzalo, N.; Di Salvo, M. E.; Imola, F.; Tamburino, C. et al. Detection of very early stent healing after primary angioplasty: An optical coherence tomographic observational study of chromium cobaltum and first-generation drug-eluting stents. The detective study. Heart 2011, 97, 1841–1846.

12

Rivero, F.; Bastante, T.; Cuesta, J.; Benedicto, A.; Restrepo, J. A.; Alfonso, F. Treatment of in-stent restenosis with bioresorbable vascular scaffolds: Optical coherence tomography insights. Can. J. Cardiol. 2015, 31, 255–259.

13

Douma, K.; Prinzen, L.; Slaaf, D. W.; Reutelingsperger, C. P. M.; Biessen, E. A. L.; Hackeng, T. M.; Post, M. J.; van Zandvoort, M. A. M. J. Nanoparticles for optical molecular imaging of atherosclerosis. Small 2009, 5, 544–557.

14

Chen, J. Y.; Saeki, F.; Wiley, B. J.; Cang, H.; Cobb, M. J.; Li, Z. -Y.; Au, L.; Zhang, H.; Kimmey, M. B.; Li, X. D. et al. Gold nanocages: Bioconjugation and their potential use as optical imaging contrast agents. Nano Lett. 2005, 5, 473–477.

15

Bibikova, O.; Popov, A.; Bykov, A.; Prilepskii, A.; Kinnunen, M.; Kordas, K.; Bogatyrev, V.; Khlebtsov, N.; Vainio, S.; Tuchin, V. Optical properties of plasmon-resonant bare and silica-coated nanostars used for cell imaging. J. Biomed. Opt. 2015, 20, 076017.

16

Skrabalak, S. E.; Chen, J.; Au, L.; Lu, X.; Li, X.; Xia, Y. Gold nanocages for biomedical applications. Adv. Mater. 2007, 19, 3177–3184.

17

Gobin, A. M.; Lee, M. H.; Halas, N. J.; James, W. D.; Drezek, R. A.; West, J. L. Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. Nano Lett. 2007, 7, 1929–1934.

18

Hu, J.; Rivero, F.; Torres, R. A.; Ramírez, H. L.; Rodríguez, E. M.; Alfonso, F.; Solé, J. G.; Jaque, D. Dynamic single gold nanoparticle visualization by clinical intracoronary optical coherence tomography. J. Biophotonics 2017, 10, 674–682.

19

Skala, M. C.; Crow, M. J.; Wax, A.; Izatt, J. A. Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres. Nano Lett. 2008, 8, 3461–3467.

20

Loo, C.; Lowery, A.; Halas, N.; West, J.; Drezek, R. Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett. 2005, 5, 709–711.

21

De León, Y. P.; Pichardo-Molina, J. L.; Ochoa, N. A.; Luna-Moreno, D. Contrast enhancement of optical coherence tomography images using branched gold nanoparticles. J. Nanomater. 2012, 2012, 571015.

22

De La Zerda, A.; Prabhulkar, S.; Perez, V. L.; Ruggeri, M.; Paranjape, A. S.; Habte, F.; Gambhir, S. S.; Awdeh, R. M. Optical coherence contrast imaging using gold nanorods in living mice eyes. Clin. Exp. Ophthalmol. 2015, 43, 358–366.

23

Adler, D. C.; Huang, S. -W.; Huber, R.; Fujimoto, J. G. Photothermal detection of gold nanoparticles using phase- sensitive optical coherence tomography. Opt. Express 2008, 16, 4376–4393.

24

Fratoddi, I.; Venditti, I.; Cametti, C.; Russo, M. V. How toxic are gold nanoparticles? The state-of-the-art. Nano Res. 2015, 8, 1771–1799.

25

Masters, J. R. HeLa cells 50 years on: The good, the bad and the ugly. Nat. Rev. Cancer 2002, 2, 315–319.

26

Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63.

27

Li, M.; Lohmüller, T.; Feldmann, J. Optical injection of gold nanoparticles into living cells. Nano Lett. 2015, 15, 770–775.

28

Cui, Y.; Wang, X. L.; Ren, W.; Liu, J.; Irudayaraj, J. Optical clearing delivers ultrasensitive hyperspectral dark-field imaging for single-cell evaluation. ACS Nano 2016, 10, 3132–3143.

29

Wax, A.; Sokolov, K. Molecular imaging and darkfield microspectroscopy of live cells using gold plasmonic nanoparticles. Laser Photonics Rev. 2009, 3, 146–158.

30

Qian, W.; Huang, X. H.; Kang, B.; El-Sayed, M. A. Dark-field light scattering imaging of living cancer cell component from birth through division using bioconjugated gold nanoprobes. J. Biomed. Opt. 2010, 15, 046025.

31

Jaque, D.; Maestro, L. M.; del Rosal, B.; Haro-Gonzalez, P.; Benayas, A.; Plaza, J. L.; Rodríguez, E. M.; Solé, J. G. Nanoparticles for photothermal therapies. Nanoscale 2014, 6, 9494–9530.

Nano Research
Pages 676-685
Cite this article:
Hu J, Sanz-Rodríguez F, Rivero F, et al. Gold nanoshells: Contrast agents for cell imaging by cardiovascular optical coherence tomography. Nano Research, 2018, 11(2): 676-685. https://doi.org/10.1007/s12274-017-1674-4

628

Views

38

Crossref

N/A

Web of Science

43

Scopus

1

CSCD

Altmetrics

Received: 25 January 2017
Revised: 09 May 2017
Accepted: 10 May 2017
Published: 25 July 2017
© Tsinghua University Press and Springer-Verlag GmbH Germany 2017
Return