Graphical Abstract

The aerobic oxidation of diaryl and aryl(hetero) methylenes into ketones, catalyzed by Ag/C nanoparticles under mild conditions, was successfully developed. This method features a wide scope of substrates, good yields, and uncomplicated recycling of the catalyst.
Dannhardt, G.; Fiebich, B. L.; Schweppenhäuser, J. COX-1/COX-2 inhibitors based on the methanone moiety. Eur. J. Med. Chem. 2002, 37, 147–161.
Hummel, C. W.; Geiser, A. G.; Bryant, H. U.; Cohen, I. R.; Dally, R. D.; Fong, K. C.; Frank, S. A.; Hinklin, R.; Jones, S. A.; Lewis, G. et al. A selective estrogen receptor modulator designed for the treatment of uterine leiomyoma with unique tissue specificity for uterus and ovaries in rats. J. Med. Chem. 2005, 48, 6772–6775.
Dohi, T.; Takenaga, N.; Goto, A.; Fujioka, H.; Kita, Y. Clean and efficient benzylic C–H oxidation in water using a hypervalent iodine reagent: Activation of polymeric iodosobenzene with KBr in the presence of montmorillonite-K10. J. Org. Chem. 2008, 73, 7365–7368.
Moriyama, K.; Takemura, M.; Togo, H. Direct and selective benzylic oxidation of alkylarenes via C–H abstraction using alkali metal bromides. Org. Lett. 2012, 14, 2414–2417.
Wu, X. H.; Gorden, A. E. V. 2-Quinoxalinol salen copper complexes for oxidation of aryl methylenes. Eur. J. Org. Chem. 2009, 2009, 503–509.
Alanthadka, A.; Devi, E. S.; Nagarajan, S.; Sridharan, V.; Suvitha, A.; Maheswari, C. U. NHC-catalyzed benzylic Csp3–H bond activation of alkylarenes and N-benzylamines for the synthesis of 3H-quinazolin-4-ones: Experimental and theoretical study. Eur. J. Org. Chem. 2016, 2016, 4872–4880.
Hossain, M. M.; Shyu, S. G. Biphasic copper-catalyzed C–H bond activation of arylalkanes to ketones with tert-butyl hydroperoxide in water at room temperature. Tetrahedron 2016, 72, 4252–4257.
Shaabani, A.; Laeini, M. S.; Shaabani, S.; Seyyedhamzeh, M. NaBrO3/guanidinium-based sulfonic acid: As a transition metal- and strong inorganic acid-free oxidation system for alcohols and alkyl arenes. New. J. Chem. 2016, 40, 2079–2082.
De Houwer, J.; Abbaspour Tehrani, K.; Maes, B. U. W. Synthesis of aryl(di)azinyl ketones through copper- and iron-catalyzed oxidation of the methylene group of aryl(di)azinylmethanes. Angew. Chem., Int. Ed. 2012, 51, 2745–2748.
Itoh, M.; Hirano, K.; Satoh, T.; Miura, M. Copper-catalyzed α-methylenation of benzylpyridines using dimethylacetamide as one-carbon source. Org. Lett. 2015, 16, 2050–2053.
Liu, J. M.; Zhang, X.; Yi, H.; Liu, C.; Liu, R.; Zhang, H.; Zhuo, K. L.; Lei, A. W. Chloroacetate-promoted selective oxidation of heterobenzylic methylenes under copper catalysis. Angew. Chem., Int. Ed. 2015, 54, 1261–1265.
Urgoitia, G.; SanMartin, R.; Herrero, M. T.; Domínguez, E. Palladium NCN and CNC pincer complexes as exceptionally active catalysts for aerobic oxidation in sustainable media. Green Chem. 2011, 13, 2161–2166.
Urgoitia, G.; Maiztegi, A.; SanMartin, R.; Herrero, M. T.; Domínguez, E. Aerobic oxidation at benzylic positions catalyzed by a simple Pd(OAc)2/bis-triazole system. RSC Adv. 2015, 5, 103210–103217.
Urgoitia, G.; SanMartin, R.; Herrero, M. T.; Domínguez, E. An outstanding catalyst for the oxygen-mediated oxidation of arylcarbinols, arylmethylene and arylacetylene compounds. Chem. Commun. 2015, 51, 4799–4802.
Shen, D. Y.; Miao, C. X.; Wang, S. F.; Xia, C. G.; Sun, W. Efficient benzylic and aliphatic C–H oxidation with selectivity for methylenic sites catalyzed by a bioinspired manganese complex. Org. Lett. 2014, 16, 1108–1111.
Bonvin, Y.; Callens, E.; Larrosa, I.; Henderson, D. A.; Oldham, J.; Burton, A. J.; Barrett, A. G. M. Bismuthcatalyzed benzylic oxidations with tert-butyl hydroperoxide. Org. Lett. 2005, 7, 4549–4552.
Peng, H.; Lin, A. J.; Zhang, Y.; Jiang, H. L.; Zhou, J. C.; Cheng, Y. X.; Zhu, C. J.; Hu, H. W. Oxidation and amination of benzylic sp3 C–H bond catalyzed by rhenium(V) complexes. ACS Catal. 2012, 2, 163–167.
Wang, Y.; Kuang, Y.; Wang, Y. H. Rh2(esp)2-catalyzed allylic and benzylic oxidations. Chem. Commun. 2015, 51, 5852–5855.
Li, X. H.; Chen, J. S.; Wang, X. C.; Sun, J. H.; Antonietti, M. Metal-free activation of dioxygen by graphene/g-C3N4 nanocomposites: Functional dyads for selective oxidation of saturated hydrocarbons. J. Am. Chem. Soc. 2011, 133, 8074–8077.
Gao, Y. J.; Hu, G.; Zhong, J.; Shi, Z. J.; Zhu, Y. S.; Su, D. S.; Wang, J. G.; Bao, X. H.; Ma, D. Nitrogen-doped sp2-hybridized carbon as a superior catalyst for selective oxidation. Angew. Chem., Int. Ed. 2013, 52, 2109–2113.
Zhang, P. F.; Lu, H. F.; Zhou, Y.; Zhang, L.; Wu, Z. L.; Yang, S. Z.; Shi, H. L.; Zhu, Q. L.; Chen, Y. F.; Dai, S. Mesoporous MnCeOx solid solutions for low temperature and selective oxidation of hydrocarbons. Nat. Commun. 2015, 6, 8446.
Shaabani, A.; Hezarkhani, Z.; Badali, E. Wool supported manganese dioxide nano-scale dispersion: A biopolymer based catalyst for the aerobic oxidation of organic compounds. RSC Adv. 2015, 5, 61759–61767.
Fan, S.; Dong, W. J.; Huang, X. B.; Gao, H. Y.; Wang, J. J.; Jin, Z. K.; Tang, J.; Wang, G. In situ-induced synthesis of magnetic Cu-CuFe2O4@HKUST-1 heterostructures with enhanced catalytic performance for selective aerobic benzylic C–H oxidation. ACS Catal. 2017, 7, 243–249.
Shaabani, A.; Hezarkhani, Z.; Nejad, M. K. Cr- and Znsubstituted cobalt ferrite nanoparticles supported on guanidinemodified graphene oxide as efficient and recyclable catalysts. J. Mater. Sci. 2017, 52, 96–112.
Shi, D. B.; Ren, Y. W.; Jiang, H. F.; Lu, J. X.; Cheng, X. F. A new three-dimensional metal-organic framework constructed from 9, 10-anthracene dibenzoate and Cd(Ⅱ) as a highly active heterogeneous catalyst for oxidation of alkylbenzenes. Dalton Trans. 2013, 42, 484–491.
Xu, W. X.; Zhang, Z. Q.; Zhao, X.; Li, J. Catalytically active metal organic framework based on a porphyrin modified by electron-withdrawing groups. J. Coord. Chem. 2017, 70, 746–755.
Verma, S.; Nasir Baig, R. B.; Nadagouda, M. N.; Varma, R. S. Photocatalytic C–H activation of hydrocarbons over VO@g-C3N4. ACS Sustainable Chem. Eng. 2016, 4, 2333–2336.
Mühldorf, B.; Wolf, R. Photocatalytic benzylic C–H bond oxidation with a flavin scandium complex. Chem. Commun. 2015, 51, 8425–8428.
He, C.; Zhang, X. H.; Huang, R. F.; Pan, J.; Li, J. Q.; Ling, X. G.; Xiong, Y.; Zhu, X. M. Synthesis of structurally diverse diarylketones through the diarylmethyl sp3 CH oxidation. Tetrahedron Lett. 2014, 55, 4458–4462.
Chebolu, R.; Bahuguna, A.; Sharma, R.; Mishra, V. K.; Ravikumar, P. C. An unusual chemoselective oxidation strategy by an unprecedented exploration of an electrophilic center of DMSO: A new facet to classical DMSO oxidation. Chem. Commun. 2015, 51, 15438–15441.
Wang, H. Q.; Wang, Z.; Huang, H. C.; Tan, J. J.; Xu, K. KOtBu-promoted oxidation of (hetero)benzylic Csp3–H to ketones with molecular oxygen. Org. Lett. 2016, 18, 5680–5683.
Cai, S. F.; Rong, H. P.; Yu, X. F.; Liu, X. W.; Wang, D. S.; He, W.; Li, Y. D. Room temperature activation of oxygen by monodispersed metal nanoparticles: Oxidative dehydrogenative coupling of anilines for azobenzene syntheses. ACS Catal. 2013, 3, 478–486.
Zhang, Q.; Cai, S. F.; Li, L. S.; Chen, Y. F.; Rong, H. P.; Niu, Z. Q.; Liu, J. J.; He, W.; Li, Y. D. Direct syntheses of styryl ethers from benzyl alcohols via Ag nanoparticlecatalyzed tandem aerobic oxidation. ACS Catal. 2013, 3, 1681–1684.
Balfour, J. A.; McTavish, D.; Heel, R. C. Fenofibrate: A review of its pharmacodynamic and pharmacokinetic properties and therapeutic use in dyslipidaemia. Drugs 1990, 40, 260–290.
McKeage, K.; Keating, G. M. Fenofibrate: A review of its use in dyslipidaemia. Drugs 2001, 71, 1917–1946.
Krysiak, R.; Gdula-Dymek, A.; Bachowski, R.; Okopien, B. Pleiotropic effects of atorvastatin and fenofibrate in metabolic syndrome and different types of pre-diabetes. Diabetes Care 2010, 33, 2266–2270.
Ahlburg, A.; Lindhardt, A. T.; Taaning, R. H.; Modvig, A. E.; Skrydstrup, T. An air-tolerant approach to the carbonylative Suzuki-Miyaura coupling: Applications in isotope labeling. J. Org. Chem. 2013, 78, 10310–10318.
Chu, L. L.; Lipshultz, J. M.; MacMillan, D. W. C. Merging photoredox and nickel catalysis: The direct synthesis of ketones by the decarboxylative arylation of α-oxo acids. Angew. Chem., Int. Ed. 2015, 54, 7929–7933.