AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

The in vivo targeted molecular imaging of fluorescent silicon nanoparticles in Caenorhabditis elegans

Yanfeng Zhou1,2Yun Zhang2Yiling Zhong1Rong Fu2Sicong Wu1Qi Wang1,2Houy Wang1Yuanyuan Su1Huimin Zhang2( )Yao He1( )
Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM)Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO−CIC)Soochow UniversitySuzhou 215123China
Institutes of Biology and Medical Sciences (IBMS)Soochow UniversitySuzhou 215123China
Show Author Information

Graphical Abstract

Abstract

Owing to their unique optical properties (e.g., bright fluorescence coupled with strong photostability) and negligible toxicity, fluorescent silicon nanoparticles (SiNPs) have been demonstrated to be promising probes for bioimaging analysis. Herein, we describe the use of Caenorhabditis elegans (C. elegans) as an animal model to investigate the in vivo behavior and molecular imaging capacity of ultrasmall fluorescent SiNPs (e.g., ~ 3.9 ± 0.4 nm). Our studies show that (1) the internalized SiNPs do not affect the morphology and physiology of the worms, suggesting the superior biocompatibility of SiNPs in live organisms; (2) the internalized SiNPs cannot cross the basement membrane of C. elegans tissues and they display limited diffusion ability in vivo, providing the possibility of their use as nanoprobes for specific tissue imaging studies in intact animals; (3) more than 80% of the fluorescence signal of internalized SiNPs remains even after 120 min of continuous laser bleaching, whereas only ~20% of the signal intensity of mCherry or cadmium telluride quantum dots remains under the same condition, indicating the robust photostability of SiNPs in live organisms; and (4) cyclic RGD-peptide-conjugated SiNPs can specifically label muscle attachment structures in live C. elegans, which is the first proof-of-concept example of SiNPs for targeted molecular imaging in these live worms. These finding raise exciting opportunities for the design of high-quality SiNP-based fluorescent probes for long-term and real-time tracking of biological events in vivo.

Electronic Supplementary Material

Download File(s)
12274_2017_1677_MOESM1_ESM.pdf (2.1 MB)

References

1

Hellebust, A.; Richards-Kortum, R. Advances in molecular imaging: Targeted optical contrast agents for cancer diagnostics. Nanomedicine 2012, 7, 429–445.

2

Shi, X. L.; Zhang, X. J.; Xia, T.; Fang, X. H. Living cell study at the single-molecule and single-cell levels by atomic force microscopy. Nanomedicine 2012, 7, 1625–1637.

3

Li, N.; Li, Y. H.; Han, Y. Y.; Pan, W.; Zhang, T. T.; Tang, B. A highly selective and instantaneous nanoprobe for detection and imaging of ascorbic acid in living cells and in vivo. Anal. Chem. 2014, 86, 3924–3930.

4

Jiang, Y. Y.; Deng, Z. J.; Yang, D.; Deng, X.; Li, Q.; Sha, Y. L.; Li, C. H.; Xu, D. S. Gold nanoflowers for 3D volumetric molecular imaging of tumors by photoacoustic tomography. Nano Res. 2015, 8, 2152–2161.

5

Xiao, L. S.; Li, J. T.; Brougham, D. F.; Fox, E. K.; Feliu, N.; Bushmelev, A.; Schmidt, A.; Mertens, N.; Kiessling, F.; Valldor, M. et al. Water-soluble superparamagnetic magnetite nanoparticles with biocompatible coating for enhanced magnetic resonance imaging. ACS Nano 2011, 5, 6315–6324.

6

Eberlin, L. S.; Tibshirani, R. J.; Zhang, J. L.; Longacre, T. A.; Berry, G. J.; Bingham, D. B.; Norton, J. A.; Zare, R. N.; Poultsides, G. A. Molecular assessment of surgical-resection margins of gastric cancer by mass-spectrometric imaging. Proc. Natl. Acad. Sci. USA 2014, 111, 2436–2441.

7

Erathodiyil, N.; Ying, J. Y. Functionalization of inorganic nanoparticles for bioimaging applications. Acc. Chem. Res. 2011, 44, 925–935.

8

Xu, H.; Li, Q.; Wang, L. H.; He, Y.; Shi, J. Y.; Tang, B.; Fan, C. H. Nanoscale optical probes for cellular imaging. Chem. Soc. Rev. 2014, 43, 2650–2661.

9

Wolfbeis, O. S. An overview of nanoparticles commonly used in fluorescent bioimaging. Chem. Soc. Rev. 2015, 44, 4743–4768.

10

Guo, W. S.; Yang, W. T.; Wang, Y.; Sun, X. L.; Liu, Z. Y.; Zhang, B. B.; Chang, J.; Chen, X. Y. Color-tunable Gd-Zn-Cu-In-S/ZnS quantum dots for dual modality magnetic resonance and fluorescence imaging. Nano Res. 2014, 7, 1581–1591.

11

Samanta, A.; Deng, Z. T.; Liu, Y.; Yan, H. A perspective on functionalizing colloidal quantum dots with DNA. Nano Res. 2013, 6, 853–870.

12

Pinaud, F.; Clarke, S.; Sittner, A.; Dahan, M. Probing cellular events, one quantum dot at a time. Nat. Methods 2010, 7, 275–285.

13

Fakhri, N.; Wessel, A. D.; Willms, C.; Pasquali, M.; Klopfenstein, D. R.; MacKintosh, F. C.; Schmidt, C. F. High-resolution mapping of intracellular fluctuations using carbon nanotubes. Science 2014, 344, 1031–1035.

14

Zhang, L.; Lei, J. P.; Liu, J. T.; Ma, F. J.; Ju, H. X. Persistent luminescence nanoprobe for biosensing and lifetime imaging of cell apoptosis via time-resolved fluorescence resonance energy transfer. Biomaterials 2015, 67, 323–334.

15

Li, Y. T.; Tang, J. H.; He, L. C.; Liu, Y.; Liu, Y. L.; Chen, C. Y.; Tang, Z. Y. Core–shell upconversion nanoparticle@ metal–organic framework nanoprobes for luminescent/magnetic dual-mode targeted imaging. Adv. Mater. 2015, 27, 4075–4080.

16

Wu, N.; Bao, L.; Ding, L.; Ju, H. X. A single excitation-duplexed imaging strategy for profiling cell surface protein-specific glycoforms. Angew. Chem., Int. Ed. 2016, 55, 5220–5224.

17

Peng, F.; Su, Y. Y.; Zhong, Y. L.; Fan, C. H.; Lee, S. -T.; He, Y. Silicon nanomaterials platform for bioimaging, biosensing, and cancer therapy. Acc. Chem. Res. 2014, 47, 612–623.

18

Montalti, M.; Cantelli, A.; Battistelli, G. Nanodiamonds and silicon quantum dots: Ultrastable and biocompatible luminescent nanoprobes for long-term bioimaging. Chem. Soc. Rev. 2015, 44, 4853–4921.

19

Joo, J.; Liu, X. Y.; Kotamraju, V. R.; Ruoslahti, E.; Nam, Y.; Sailor, M. J. Gated luminescence imaging of silicon nano-particles. ACS Nano 2015, 9, 6233–6241.

20

Dasog, M.; Kehrle, J.; Rieger, B.; Veinot, J. G. C. Silicon nanocrystals and silicon-polymer hybrids: Synthesis, surface engineering, and applications. Angew. Chem., Int. Ed. 2016, 55, 2322–2339.

21

Li, Z. F.; Ruckenstein, E. Water-soluble poly (acrylic acid) grafted luminescent silicon nanoparticles and their use as fluorescent biological staining labels. Nano Lett. 2004, 4, 1463–1467.

22

Pang, J. Y.; Su, Y. Y.; Zhong, Y. L.; Peng, F.; Song, B.; He, Y. Fluorescent silicon nanoparticle-based gene carriers featuring strong photostability and feeble cytotoxicity. Nano Res. 2016, 9, 3027–3037.

23

Zhang, X. D.; Chen, X. K.; Kai, S. Q.; Wang, H. Y.; Yang, J. J.; Wu, F. G.; Chen, Z. Highly sensitive and selective detection of dopamine using one-pot synthesized highly photoluminescent silicon nanoparticles. Anal. Chem. 2015, 87, 3360–3365.

24

Dasog, M.; Yang, Z. Y.; Regli, S.; Atkins, T. M.; Faramus, A.; Singh, M. P.; Muthuswamy, E.; Kauzlarich, S. M.; Tilley, R. D.; Veinot, J. G. C. Chemical insight into the origin of red and blue photoluminescence arising from freestanding silicon nanocrystals. ACS Nano 2013, 7, 2676–2685.

25

Erogbogbo, F.; Yong, K. T.; Roy, I.; Hu, R.; Law, W. C.; Zhao, W. W.; Ding, H.; Wu, F.; Kumar, R.; Swihart, M. T. et al. In vivo targeted cancer imaging, sentinel lymph node mapping and multi-channel imaging with biocompatible silicon nanocrystals. ACS Nano 2011, 5, 413–423.

26

Choi, C. H. J.; Zuckerman, J. E.; Webster, P.; Davis, M. E. Targeting kidney mesangium by nanoparticles of defined size. Proc. Natl. Acad. Sci. USA 2011, 108, 6656–6661.

27

Zhang, X. D.; Luo, Z. T.; Chen, J.; Song, S. S.; Yuan, X.; Shen, X.; Wang, H.; Sun, Y. M.; Gao, K.; Zhang, L. F. et al. Ultrasmall glutathione-protected gold nanoclusters as next generation radiotherapy sensitizers with high tumor uptake and high renal clearance. Sci. Rep. 2015, 5, 8669.

28

Liu, J.; Wang, P. Y.; Zhang, X.; Wang, L. M.; Wang, D. L.; Gu, Z. J.; Tang, J. L.; Guo, M. Y.; Cao, M. J.; Zhou, H. G. et al. Rapid degradation and high renal clearance of Cu3BiS3 nanodots for efficient cancer diagnosis and photothermal therapy in vivo. ACS Nano 2016, 10, 4587–4598.

29

He, Y.; Zhong, Y. L.; Peng, F.; Wei, X. P.; Su, Y. Y.; Lu, Y. M.; Su, S.; Gu, W.; Liao, L. S.; Lee, S. T. One-pot microwave synthesis of water-dispersible, ultraphoto- and pH-stable, and highly fluorescent silicon quantum dots. J. Am. Chem. Soc. 2011, 133, 14192–14195.

30

Zhong, Y. L.; Peng, F.; Bao, F.; Wang, S. Y.; Ji, X. Y.; Yang, L.; Su, Y. Y.; Lee, S. T.; He, Y. Large-scale aqueous synthesis of fluorescent and biocompatible silicon nanoparticles and their use as highly photostable biological probes. J. Am. Chem. Soc. 2013, 135, 8350–8356.

31

Zhong, Y. L.; Peng, F.; Wei, X. P.; Zhou, Y. F.; Wang, J.; Jiang, X. X.; Su, Y. Y.; Su, S.; Lee, S. T.; He, Y. Microwave-assisted synthesis of biofunctional and fluorescent silicon nanoparticles using proteins as hydrophilic ligands. Angew. Chem., Int. Ed. 2012, 51, 8485–8489.

32

Zhong, Y. L.; Sun, X. T.; Wang, S. Y.; Peng, F.; Bao, F.; Su, Y. Y.; Li, Y. Y.; Lee, S. T.; He, Y. Facile, large-quantity synthesis of stable, tunable-color silicon nanoparticles and their application for long-term cellular imaging. ACS Nano 2015, 9, 5958–5967.

33

Wu, S. C.; Zhong, Y. L.; Zhou, Y. F.; Song, B.; Chu, B. B.; Ji, X. Y.; Wu, Y. Y.; Su, Y. Y.; He, Y. Biomimetic preparation and dual-color bioimaging of fluorescent silicon nanoparticles. J. Am. Chem. Soc. 2015, 137, 14726–14732.

34

Chu, B. B.; Wang, H. Y.; Song, B.; Peng, F.; Su, Y. Y.; He, Y. Fluorescent and photostable silicon nanoparticles sensors for real-time and long-term intracellular ph measurement in live cells. Anal. Chem. 2016, 88, 9235–9242.

35

Wong, A.; Li, X. N.; Molin, L.; Solari, F.; Elena-Herrmann, B.; Sakellariou, D. μHigh resolution-magic-angle spinning NMR spectroscopy for metabolic phenotyping of Caenorhabditis elegans. Anal. Chem. 2014, 86, 6064–6070.

36

Stupp, G. S.; Clendinen, C. S.; Ajredini, R.; Szewc, M. A.; Garrett, T.; Menger, R. F.; Yost, R. A.; Beecher, C.; Edison, A. S. Isotopic ratio outlier analysis global metabolomics of Caenorhabditis elegans. Anal. Chem. 2013, 85, 11858–11865.

37

Zhang, Y.; Li, W. N.; Li, L. F.; Li, Y. B.; Fu, R.; Zhu, Y.; Li, J.; Zhou, Y. F.; Xiong, S. D.; Zhang, H. M. Structural damage in the C. elegans epidermis causes release of STA-2 and induction of an innate immune response. Immunity 2015, 42, 309–320.

38

Qu, Y.; Li, W.; Zhou, Y. L.; Liu, X. F.; Zhang, L. L.; Wang, L. M.; Li, Y. F.; Iida, A.; Tang, Z. Y.; Zhao, Y. L. et al. Full assessment of fate and physiological behavior of quantum dots utilizing Caenorhabditis elegans as a model organism. Nano Lett. 2011, 11, 3174–3183.

39

Gonzalez-Moragas, L.; Roig, A.; Laromaine, A. C. elegans as a tool for in vivo nanoparticle assessment. Adv. Colloid Interface Sci. 2015, 219, 10–26.

40

Kuo, Y.; Hsu, T. Y.; Wu, Y. C.; Chang, H. C. Fluorescent nanodiamond as a probe for the intercellular transport of proteins in vivo. Biomaterials 2013, 34, 8352–8360.

41

Song, C. X.; Zhong, Y. L.; Jiang, X. X.; Peng, F.; Lu, Y. M.; Ji, X. Y.; Su, Y. Y.; He, Y. Peptide-conjugated fluorescent silicon nanoparticles enabling simultaneous tracking and specific destruction of cancer cells. Anal. Chem. 2015, 87, 6718–6723.

42

Chen, B. H.; Jiang, Y.; Zeng, S.; Yan, J. C.; Li, X.; Zhang, Y.; Zou, W.; Wang, X. C. Endocytic sorting and recycling require membrane phosphatidylserine asymmetry maintained by tat-1/chat-1. PLos Genet. 2010, 6. e1001235.

43

Zanni, E.; De Bellis, G.; Bracciale, M. P.; Broggi, A.; Santarelli, M. L.; Sarto, M. S.; Palleschi, C.; Uccelletti, D. Graphite nanoplatelets and Caenorhabditis elegans: Insights from an in vivo model. Nano Lett. 2012, 12, 2740–2744.

44

Mohan, N.; Chen, C. S.; Hsieh, H. H.; Wu, Y. C.; Chang, H. C. In vivo imaging and toxicity assessments of fluorescent nanodiamonds in Caenorhabditis elegans. Nano Lett. 2010, 10, 3692–3699.

45

Costa, M.; Draper, B. W.; Priess, J. R. The role of actin filaments in patterning the Caenorhabditis elegans cuticle. Dev. Biol. 1997, 184, 373–384.

46

Francis, G. R.; Waterston, R. H. Muscle organization in Caenorhabditis elegans: Localization of proteins implicated in thin filament attachment and I-band organization. J. Cell Biol. 1985, 101, 1532–1549.

47

Oka, T.; Toyomura, T.; Honjo, K.; Wada, Y.; Futai, M. Four subunit a isoforms of Caenorhabditis elegans vacuolar H+-ATPase- cell-specific expression during development. J. Biol. Chem. 2001, 276, 33079–33085.

48

Zhou, Y. F.; Wang, Q.; Song, B.; Wu, S. C.; Su, Y. Y.; Zhang, H. M.; He, Y. A real-time documentation and mechanistic investigation of quantum dots-induced autophagy in live Caenorhabditis elegans. Biomaterials 2015, 72, 38–48.

49

Gettner, S. N.; Kenyon, C.; Reichardt, L. F. Characterization of β pat-3 heterodimers, a family of essential integrin receptors in C. elegans. J. Cell Biol. 1995, 129, 1127–1141.

50

Mackinnon, A. C.; Qadota, H.; Norman, K. R.; Moerman, D. G.; Williams, B. D. C. elegans PAT-4/ILK functions as an adaptor protein within integrin adhesion complexes. Curr. Boil. 2002, 12, 787–797.

Nano Research
Pages 2336-2346
Cite this article:
Zhou Y, Zhang Y, Zhong Y, et al. The in vivo targeted molecular imaging of fluorescent silicon nanoparticles in Caenorhabditis elegans. Nano Research, 2018, 11(5): 2336-2346. https://doi.org/10.1007/s12274-017-1677-1

665

Views

31

Crossref

N/A

Web of Science

29

Scopus

2

CSCD

Altmetrics

Received: 21 December 2016
Revised: 11 May 2017
Accepted: 15 May 2017
Published: 12 May 2018
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017
Return