Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Electrical and optical enhancements of single-layer semiconducting materials such as transition metal dichalcogenides have recently been studied to achieve sensitive properties via external treatments, such as the formation of organic/inorganic protecting layers on field-effect transistors (FETs), thermal annealing, and nano-dot doping of sensors and detectors. Here, we propose a new analytical approach to electrical and optical enhancement through a passivation process using atomic layer deposition (ALD), and demonstrate a synthesized MoS2 monolayer incorporated with Al atoms in an Al2O3 passivation layer. The incorporated Al atoms in the MoS2 monolayer are clearly observed by spherical aberration-corrected scanning transmission electron microscopy (Cs-STEM) and TEM-energy-dispersive X-ray spectroscopy results. We demonstrate that the chemically incorporated FETs exhibit highly enhanced mobilities of approximately 3.7 cm2·V-1·s-1, forty times greater than that of as-synthesized MoS2, with a three-fold improvement in the photoluminescence properties.
Zhang, W. J.; Huang, J. -K.; Chen, C. -H.; Chang, Y. -H.; Chen, Y. -J.; Li, L. -J. High-gain phototransistors based on a CVD MoS2 monolayer. Adv. Mater. 2013, 25, 3456-3461.
Chen, C. Y.; Qiao, H.; Lin, S. H.; Luk, C. M.; Liu, Y.; Xu, Z. Q.; Song, J. C.; Xue, Y. Z.; Li, D. L.; Yuan, J. et al. Highly responsive MoS2 photodetectors enhanced by graphene quantum dots. Sci. Rep. 2015, 5, 11830.
Tsuboi, Y.; Wang, F. J.; Kozawa, D.; Funahashi, K.; Mouri, S.; Miyauchi, Y.; Takenobu, T.; Matsuda, K. Enhanced photovoltaic performances of graphene/Si solar cells by insertion of a MoS2 thin film. Nanoscale 2015, 7, 14476-14482.
Tsai, M. -L.; Su, S. -H.; Chang, J. -K.; Tsai, D. -S.; Chen, C. -H.; Wu, C. -I.; Li, L. -J.; Chen, L. -J.; He, J. -H. Monolayer MoS2 heterojunction solar cells. ACS Nano 2014, 8, 8317-8322.
Zhang, Y. W.; Li, H.; Wang, L.; Wang, H. M.; Xie, X. M.; Zhang, S. -L.; Liu, R.; Qiu, Z. -J. Photothermoelectric and photovoltaic effects both present in MoS2. Sci. Rep. 2015, 5, 7938.
Bertolazzi, S.; Krasnozhon, D.; Kis, A. Nonvolatile memory cells based on MoS2/graphene heterostructures. ACS Nano 2013, 7, 3246-3252.
Zhang, E. Z.; Wang, W. Y.; Zhang, C.; Jin, Y. B.; Zhu, G. D.; Sun, Q. Q.; Zhang, D. W.; Zhou, P.; Xiu, F. X. Tunable charge-trap memory based on few-layer MoS2. ACS Nano 2015, 9, 612-619.
Roy, K.; Padmanabhan M.; Goswami S.; Sai, T. P.; Ramalingam, G.; Raghavan, S.; Ghosh, A. Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices. Nat. Nanotechnol. 2013, 8, 826-830.
Lembke, D.; Kis, A. Breakdown of high-performance monolayer MoS2 transistors. ACS Nano 2012, 6, 10070-10075.
Wu, W.; De, D.; Chang, S. -C.; Wang, Y.; Peng, H. B.; Bao, J. M.; Pei, S. -S. High mobility and high on/off ratio field- effect transistors based on chemical vapor deposited single- crystal MoS2 grains. Appl. Phys. Lett. 2013, 102, 142106.
Kappera, R.; Voiry, D.; Yalcin, S. E.; Branch, B.; Gupta, G.; Mohite, A. D.; Chhowalla, M. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 2014, 13, 1128-1134.
Liu, H.; Si, M. W.; Deng, Y. X.; Neal, A. T.; Du, Y. C.; Najmaei, S.; Ajayan, P. M.; Lou, J.; Ye, P. D. Switching mechanism in single-layer molybdenum disulfide transistors: An insight into current flow across Schottky barriers. ACS Nano 2014, 8, 1031-1038.
He, G.; Ghosh, K.; Singisetti, U.; Ramamoorthy, H.; Somphonsane R.; Bohra, G.; Matsunaga. M.; Higuchi, A.; Aoki, N.; Najmaei, S. et al. Conduction mechanisms in CVD-grown monolayer MoS2 transistors: From variable-range hopping to velocity saturation. Nano Lett. 2015, 15, 5052-5058.
Fuhrer, M. S.; Hone, J. Measurement of mobility in dual- gated MoS2 transistors. Nat. Nanotechnol. 2013, 8, 146-147.
Ghorbani-Asl, M.; Enyashin, A. N.; Kuc, A.; Seifert, G.; Heine, T. Defect-induced conductivity anisotropy in MoS2 monolayers. Phys. Rev. B 2013, 88, 245440.
Santosh, K. C.; Longo, R. C.; Addou, R.; Wallace, R. M.; Cho, K. Impact of intrinsic atomic defects on the electronic structure of MoS2 monolayers. Nanotechnology 2014, 25, 375703.
Islam, M. R.; Kang, N.; Bhanu, U.; Paudel, H. P.; Erementchouk, M.; Tetard, L.; Leuenberger, M. N.; Khondaker, S. I. Tuning the electrical property via defect engineering of single layer MoS2 by oxygen plasma. Nanoscale 2014, 6, 10033-10039.
Zhou, C. J.; Wang, X. S.; Raju, S.; Lin, Z. Y.; Villaroman, D.; Huang, B. L.; Chan, H. L. -W.; Chan, M. S.; Chai, Y. Low voltage and high on/off ratio field-effect transistors based on CVD MoS2 and ultra high-k gate dielectric PZT. Nanoscale 2015, 7, 8695-8700.
Cheng, L. X.; Qin, X. Y.; Lucero, A. T.; Azcatl, A.; Huang, J.; Wallace, R. M.; Cho, K.; Kim, J. Atomic layer deposition of a high-k dielectric on MoS2 using trimethylaluminum and ozone. ACS Appl. Mater. Interfaces 2014, 6, 11834-11838.
Zhang, K. H.; Feng, S. M.; Wang, J. J.; Azcatl, A.; Lu, N.; Addou, R.; Wang, N.; Zhou, C. J.; Lerach, J.; Bojan, V. et al. Manganese doping of monolayer MoS2: The substrate is critical. Nano Lett. 2015, 15, 6586-6591.
Al-Dulaimi, N.; Lewis, D. J.; Zhong, X. L.; Malik, M. A.; O'Brien, P. Chemical vapour deposition of rhenium disulfide and rhenium-doped molybdenum disulfide thin films using single-source precursors. J. Mater. Chem. C 2016, 4, 2312- 2318.
Amani, M.; Chin, M. L.; Birdwell, A. G.; O'Regan, T. P.; Najmaei, S.; Liu, Z.; Ajayan, P. M.; Lou, J.; Dubey, M. Electrical performance of monolayer MoS2 field-effect transistors prepared by chemical vapor deposition. Appl. Phys. Lett. 2013, 102, 193107.
Wang, J.; Chen, L. F.; Lu, W. J.; Zeng, M. Q.; Tan, L. F.; Ren, F.; Jiang, C. Z.; Fu, L. Direct growth of molybdenum disulfide on arbitrary insulating surfaces by chemical vapor deposition. RSC Adv. 2015, 5, 4364-4367.
Ye, M. X.; Winslow, D.; Zhang, D. Y.; Pandey, R.; Yap, Y. K. Recent advancement on the optical properties of two- dimensional molybdenum disulfide (MoS2) thin films. Photonics 2015, 2, 288-307.
O'Brien, M.; McEvoy, N.; Hanlon, D.; Hallam, T.; Coleman, J. N.; Duesberg, G. S. Mapping of low-frequency Raman modes in CVD-grown transition metal dichalcogenides: Layer number, stacking orientation and resonant effects. Sci. Rep. 2016, 6, 19476.
Yang, L.; Cui, X. D.; Zhang, J. Y.; Wang, K.; Shen, M.; Zeng, S. S.; Dayeh, S. A.; Feng, L.; Xiang, B. Lattice strain effects on the optical properties of MoS2 nanosheets. Sci. Rep. 2014, 4, 5649.
Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. -J.; Loh, K. P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenidenanosheets. Nat. Chem. 2013, 5, 263-275.
Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two- dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699-712.
Jang, C.; Adam, S.; Chen, J. -H.; Williams, E. D.; Das Sarma, S.; Fuhrer, M. S. Tuning the effective fine structure constant in graphene: Opposing effects of dielectric screening on short- and long-range potential scattering. Phys. Rev. Lett. 2008, 101, 146805.
Tanaka, J.; Ueoka, Y.; Yoshitsugu, K.; Fujii, M.; Ishikawa, Y.; Uraoka, Y.; Takechi, K.; Tanabe, H. Comparison between effects of PECVD-SiOx and thermal ALD-AlOx passivation layers on characteristics of amorphous InGaZnO TFTs. ECS J. Solid State Sci. Technol. 2015, 4, Q61-Q65.
Hong, J. H.; Hu, Z. X.; Probert, M.; Li, K.; Lv, D. H.; Yang, X. N.; Gu, L.; Mao, N. N.; Feng, Q. L.; Xie, L. M. et al. Exploring atomic defects in molybdenum disulphide monolayers. Nat. Commun. 2015, 6, 6293.
Mouri, S.; Miyauchi, Y.; Matsuda, K. Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano Lett. 2013, 13, 5944-5948.
Kim, Y.; Jhon, Y. I.; Park, J.; Kim, C.; Lee, S.; Jhon, Y. M. Plasma functionalization for cyclic transition between neutral and charged excitons in monolayer MoS2. Sci. Rep. 2016, 6, 21405.
Tongay, S.; Suh, J.; Ataca, C.; Fan, W.; Luce, A.; Kang, J. S.; Liu, J.; Ko, C.; Raghunathanan, R.; Zhou, J. et al. Defects activated photoluminescence in two-dimensional semiconductors: Interplay between bound, charged, and free excitons. Sci. Rep. 2013, 3, 2657.