AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Defective molybdenum sulfide quantum dots as highly active hydrogen evolution electrocatalysts

Gang Ou1,2,§Peixun Fan3,§Xiaoxing Ke4Yushuai Xu1Kai Huang1Hehe Wei1Wen Yu1Hongjun Zhang3Minlin Zhong3( )Hui Wu1( )Yadong Li2
State Key Laboratory of New Ceramics and Fine ProcessingSchool of Materials Science and EngineeringTsinghua UniversityBeijing100084China
Department of Chemistry and Collaborative Innovation Center for Nanomaterial Science and EngineeringTsinghua UniversityBeijing100084China
Laser Materials Processing Research CentreSchool of Materials Science and EngineeringTsinghua UniversityBeijing100084China
Institute of Microstructure and Property of Advanced MaterialsBeijing University of TechnologyBeijing100124China

§ Gang Ou and Peixun Fan contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Molybdenum disulfide (MoS2), a promising non-precious electrocatalyst for the hydrogen evolution reaction with two-dimensional layered structure, has received increasing attention in recent years. Its electrocatalytic performance has been limited by the low active site content and poor conductivity. Herein, we report a facile and general ultrafast laser ablation method to synthesize MoS2 quantum dots (MS-QDs) for electrocatalytic HER with fully exposed active sites and highly enhanced conductivity. The MS-QDs were prepared by ultrafast laser ablation of the corresponding bulk material in aqueous solution, during which they were partially oxidized and formed defective structures. The as-prepared MS-QDs demonstrated high activity and stability in the electrocatalytic HER, owing to their very large surface area, defective structure, abundance of active sites, and high conductivity. The present MS-QDs can also find application in optics, sensing, energy storage, and conversion technologies.

Electronic Supplementary Material

Download File(s)
nr-11-2-751_ESM.pdf (2.5 MB)

References

1

Zhang, B.; Zheng, X. L.; Voznyy, O.; Comin, R.; Bajdich, M.; Garcia-Melchor, M.; Han, L.; Xu, J.; Liu, M.; Zheng, L. et al. Homogeneously dispersed multimetal oxygen-evolving catalysts. Science 2016, 352, 333-337.

2

Sun, C. C.; Dong, Q. C.; Yang, J.; Dai, Z. Y.; Lin, J. J.; Chen, P.; Huang, W.; Dong, X. C. Metal-organic framework derived CoSe2 nanoparticles anchored on carbon fibers as bifunctional electrocatalysts for efficient overall water splitting. Nano Res. 2016, 9, 2234-2243.

3

Zou, X. X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148-5180.

4

Gong, M.; Dai, H. J. A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts. Nano Res. 2015, 8, 23-39.

5

Morales-Guio, C. G.; Stern, L. A.; Hu, X. L. Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chem. Soc. Rev. 2014, 43, 6555-6569.

6

Geng, X. M.; Sun, W. W.; Wu, W.; Chen, B.; Al-Hilo, A.; Benamara, M.; Zhu, H. L.; Watanabe, F.; Cui, J. B.; Chen, T. P. Pure and stable metallic phase molybdenum disulfide nanosheets for hydrogen evolution reaction. Nat. Commun. 2016, 7, 10672.

7

Zhang, Q. Q.; Bai, H.; Zhang, Q.; Ma, Q.; Li, Y. H.; Wan, C. Q.; Xi, G. C. MoS2 yolk-shell microspheres with a hierarchical porous structure for efficient hydrogen evolution. Nano Res. 2016, 9, 3038-3047.

8

Hinnemann, B.; Moses, P. G.; Bonde, J.; Jørgensen, K. P.; Nielsen, J. H.; Horch, S.; Chorkendorff, I.; Nørskov, J. K. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 2005, 127, 5308-5309.

9

Jaramillo, T. F.; Jørgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 2007, 317, 100-102.

10

Hansen, L. P.; Ramasse, Q. M.; Kisielowski, C.; Brorson, M.; Johnson, E.; Topsøe, H.; Helveg, S. Atomic-scale edge structures on industrial-style MoS2 nanocatalysts. Angew. Chem., Int. Ed. 2011, 50, 10153-10156.

11

Acerce, M.; Voiry, D.; Chhowalla, M. Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat. Nanotechnol. 2015, 10, 313-318.

12

Kibsgaard, J.; Chen, Z. B.; Reinecke, B. N.; Jaramillo, T. F. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat. Mater. 2012, 11, 963-969.

13

Kong, D. S.; Wang, H. T.; Cha, J. J.; Pasta, M.; Koski, K. J.; Yao, J.; Cui, Y. Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano Lett. 2013, 13, 1341-1347.

14

Wang, H. T.; Kong, D. S.; Johanes, P.; Cha, J. J.; Zheng, G. Y.; Yan, K.; Liu, N.; Cui, Y. MoSe2 and WSe2 nanofilms with vertically aligned molecular layers on curved and rough surfaces. Nano Lett. 2013, 13, 3426-3433.

15

Cheng, L.; Huang, W. J.; Gong, Q. F.; Liu, C. H.; Liu, Z.; Li, Y. G.; Dai, H. J. Ultrathin WS2 nanoflakes as a high-performance electrocatalyst for the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2014, 53, 7860-7863.

16

Gong, Q. F.; Cheng, L.; Liu, C. H.; Zhang, M.; Feng, Q. L.; Ye, H. L.; Zeng, M.; Xie, L. M.; Liu, Z.; Li, Y. G. Ultrathin MoS2(1-x)Se2x alloy nanoflakes for electrocatalytic hydrogen evolution reaction. ACS Catal. 2015, 5, 2213-2219.

17

Li, H.; Tsai, C.; Koh, A. L.; Cai, L. L.; Contryman, A. W.; Fragapane, A. H.; Zhao, J. H.; Han, H. S.; Manoharan, H. C.; Abild-Pedersen, F. et al. Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat. Mater. 2016, 15, 48-53.

18

Yin, Y.; Han, J. C.; Zhang, Y. M.; Zhang, X. H.; Xu, P.; Yuan, Q.; Samad, L.; Wang, X. J.; Wang, Y.; Zhang, Z. H. et al. Contributions of phase, sulfur vacancies, and edges to the hydrogen evolution reaction catalytic activity of porous molybdenum disulfide nanosheets. J. Am. Chem. Soc. 2016, 138, 7965-7972.

19

Liu, D. B.; Xu, W. Y.; Liu, Q.; He, Q.; Haleem, Y. A.; Wang, C. D.; Xiang, T.; Zou, C. W.; Chu, W. S.; Zhong, J. et al. Unsaturated-sulfur-rich MoS2 nanosheets decorated on free-standing SWNT film: Synthesis, characterization and electrocatalytic application. Nano Res. 2016, 9, 2079-2087.

20

Kiriya, D.; Lobaccaro, P.; Nyein, H. Y. Y.; Taheri, P.; Hettick, M.; Shiraki, H.; Sutter-Fella, C. M.; Zhao, P. D.; Gao, W.; Maboudian, R. et al. General thermal texturization process of MoS2 for efficient electrocatalytic hydrogen evolution reaction. Nano Lett. 2016, 16, 4047-4053.

21

Voiry, D.; Fullon, R.; Yang, J.; de Carvalho Castro E Silva, C.; Kappera, R.; Bozkurt, I.; Kaplan, D.; Lagos, M. J.; Batson, P. E.; Gupta, G. et al. The role of electronic coupling between substrate and 2D MoS2 nanosheets in electrocatalytic production of hydrogen. Nat. Mater. 2016, 15, 1003-1009.

22

Yang, L. J.; Zhou, W. J.; Lu, J.; Hou, D. M.; Ke, Y. T.; Li, G. Q.; Tang, Z. H.; Kang, X. W.; Chen, S. W. Hierarchical spheres constructed by defect-rich MoS2/carbon nanosheets for efficient electrocatalytic hydrogen evolution. Nano Energy 2016, 22, 490-498.

23

Xie, J. F.; Zhang, H.; Li, S.; Wang, R. X.; Sun, X.; Zhou, M.; Zhou, J. F.; Lou, X. W.; Xie, Y. Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv. Mater. 2013, 25, 5807-5813.

24

Vrubel, H.; Merki, D.; Hu, X. L. Hydrogen evolution catalyzed by MoS3 and MoS2 particles. Energy Environ. Sci. 2012, 5, 6136-6144.

25

Benck, J. D.; Chen, Z. B.; Kuritzky, L. Y.; Forman, A. J.; Jaramillo, T. F. Amorphous molybdenum sulfide catalysts for electrochemical hydrogen production: Insights into the origin of their catalytic activity. ACS Catal. 2012, 2, 1916-1923.

26

Morales-Guio, C. G.; Hu, X. L. Amorphous molybdenum sulfides as hydrogen evolution catalysts. Accounts Chem. Res. 2014, 47, 2671-2681.

27

Ting, L. R. L.; Deng, Y. L.; Ma, L.; Zhang, Y. J.; Peterson, A. A.; Yeo, B. S. Catalytic activities of sulfur atoms in amorphous molybdenum sulfide for the electrochemical hydrogen evolution reaction. ACS Catal. 2016, 6, 861-867.

28

Lee, S. C.; Benck, J. D.; Tsai, C.; Park, J.; Koh, A. L.; Abild-Pedersen, F.; Jaramillo, T. F.; Sinclair, R. Chemical and phase evolution of amorphous molybdenum sulfide catalysts for electrochemical hydrogen production. ACS Nano 2016, 10, 624-632.

29

Kibsgaard, J.; Jaramillo, T. F.; Besenbacher, F. Building an appropriate active-site motif into a hydrogen-evolution catalyst with thiomolybdate[Mo3S13]2- clusters. Nat. Chem. 2014, 6, 248-253.

30

Ren, X. P.; Pang, L. Q.; Zhang, Y. X.; Ren, X. D.; Fan, H. B.; Liu, S. Z. One-step hydrothermal synthesis of monolayer MoS2 quantum dots for highly efficient electrocatalytic hydrogen evolution. J. Mater. Chem. A 2015, 3, 10693-10697.

31

Gopalakrishnan, D.; Damien, D.; Shaijumon, M. M. MoS2 quantum dot-interspersed exfoliated MoS2 nanosheets. ACS Nano 2014, 8, 5297-5303.

32

Qiao, W.; Yan, S. M.; Song, X. Y.; Zhang, X.; Sun, Y.; Chen, X.; Zhong, W.; Du, Y. W. Monolayer MoS2 quantum dots as catalysts for efficient hydrogen evolution. RSC Adv. 2015, 5, 97696-97701.

33

Xu, S. J.; Li, D.; Wu, P. Y. One-pot, facile, and versatile synthesis of monolayer MoS2/WS2 quantum dots as bioimaging probes and efficient electrocatalysts for hydrogen evolution reaction. Adv. Funct. Mater. 2015, 25, 1127-1136.

34

Li, Y. G.; Wang, H. L.; Xie, L. M.; Liang, Y. Y.; Hong, G. S.; Dai, H. J. MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2011, 133, 7296-7299.

35

Tang, Y. J.; Wang, Y.; Wang, X. L.; Li, S. L.; Huang, W.; Dong, L. Z.; Liu, C. H.; Li, Y. F.; Lan, Y. Q. Molybdenum disulfide/nitrogen-doped reduced graphene oxide nanocomposite with enlarged interlayer spacing for electrocatalytic hydrogen evolution. Adv. Energy Mater. 2016, 6, 1600116.

36

Chen, Z. B.; Cummins, D.; Reinecke, B. N.; Clark, E.; Sunkara, M. K.; Jaramillo, T. F. Core-shell MoO3-MoS2 nanowires for hydrogen evolution: A functional design for electrocatalytic materials. Nano Lett. 2011, 11, 4168-4175.

37

Li, D. J.; Maiti, U. N.; Lim, J.; Choi, D. S.; Lee, W. J.; Oh, Y.; Lee, G. Y.; Kim, S. O. Molybdenum sulfide/n-doped CNT forest hybrid catalysts for high-performance hydrogen evolution reaction. Nano Lett. 2014, 14, 1228-1233.

38

Lukowski, M. A.; Daniel, A. S.; Meng, F.; Forticaux, A.; Li, L. S.; Jin, S. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J. Am. Chem. Soc. 2013, 135, 10274-10277.

39

Voiry, D.; Yamaguchi, H.; Li, J. W.; Silva, R.; Alves, D. C. B.; Fujita, T.; Chen, M. W.; Asefa, T.; Shenoy, V. B.; Eda, G. et al. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat. Mater. 2013, 12, 850-855.

40

Wang, H. T.; Lu, Z. Y.; Xu, S. C.; Kong, D. S.; Cha, J. J.; Zheng, G. Y.; Hsu, P. C.; Yan, K.; Bradshaw, D.; Prinz, F. B. et al. Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 19701-19706.

41

Gao, M. R.; Chan, M. K. Y.; Sun, Y. G. Edge-terminated molybdenum disulfide with a 9.4-Å interlayer spacing for electrochemical hydrogen production. Nat. Commun. 2015, 6, 7493.

42

Wang, H. T.; Lu, Z. Y.; Kong, D. S.; Sun, J.; Hymel, T. M.; Cui, Y. Electrochemical tuning of MoS2 nanoparticles on three-dimensional substrate for efficient hydrogen evolution. ACS Nano 2014, 8, 4940-4947.

43

Ding, J. B.; Zhou, Y.; Li, Y. G.; Guo, S. J.; Huang, X. Q. MoS2 nanosheet assembling superstructure with a three-dimensional ion accessible site: A new class of bifunctional materials for batteries and electrocatalysis. Chem. Mater. 2016, 28, 2074-2080.

44

Merki, D.; Vrubel, H.; Rovelli, L.; Fierro, S.; Hu, X. L. Fe, Co, and Ni ions promote the catalytic activity of amorphous molybdenum sulfide films for hydrogen evolution. Chem. Sci. 2012, 3, 2515-2525.

45

Sun, X.; Dai, J.; Guo, Y. Q.; Wu, C. Z.; Hu, F. T.; Zhao, J. Y.; Zeng, X. C.; Xie, Y. Semimetallic molybdenum disulfide ultrathin nanosheets as an efficient electrocatalyst for hydrogen evolution. Nanoscale 2014, 6, 8359-8367.

46

Kagan, C. R.; Lifshitz, E.; Sargent, E. H.; Talapin, D. V. Building devices from colloidal quantum dots. Science 2016, 353, 885.

47

Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

48

Zeng, H. B.; Du, X. W.; Singh, S. C.; Kulinich, S. A.; Yang, S. K.; He, J. P.; Cai, W. P. Nanomaterials via laser ablation/ irradiation in liquid: A review. Adv. Funct. Mater. 2012, 22, 1333-1353.

49

Liu, P.; Liang, Y.; Lin, X. Z.; Wang, C. X.; Yang, G. W. A general strategy to fabricate simple polyoxometalate nanostructures: Electrochemistry-assisted laser ablation in liquid. ACS Nano 2011, 5, 4748-4755.

50

Wang, H. Q.; Koshizaki, N.; Li, L.; Jia, L. C.; Kawaguchi, K.; Li, X. Y.; Pyatenko, A.; Swiatkowska-Warkocka, Z.; Bando, Y.; Golberg, D. Size-tailored ZnO submicrometer spheres: Bottom-up construction, size-related optical extinction, and selective aniline trapping. Adv. Mater. 2011, 23, 1865-1870.

51

Petersen, S.; Barcikowski, S. In situ bioconjugation: Single step approach to tailored nanoparticle-bioconjugates by ultrashort pulsed laser ablation. Adv. Funct. Mater. 2009, 19, 1167-1172.

52

Zeng, H. B.; Yang, S. K.; Cai, W. P. Reshaping formation and luminescence evolution of ZnO quantum dots by laser-induced fragmentation in liquid. J. Phys. Chem. C 2011, 115, 5038-5043.

53

Gopalakrishnan, D.; Damien, D.; Li, B.; Gullappalli, H.; Pillai, V. K.; Ajayan, P. M.; Shaijumon, M. M. Electrochemical synthesis of luminescent MoS2 quantum dots. Chem. Commun. 2015, 51, 6293-6296.

54

Lv, X. J.; She, G. W.; Zhou, S. X.; Li, Y. M. Highly efficient electrocatalytic hydrogen production by nickel promoted molybdenum sulfide microspheres catalysts. RSC Adv. 2013, 3, 21231.

55

Xie, J. F.; Zhang, J. J.; Li, S.; Grote, F.; Zhang, X. D.; Zhang, H.; Wang, R. X.; Lei, Y.; Pan, B. C.; Xie, Y. Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J. Am. Chem. Soc. 2013, 135, 17881-17888.

56

Cummins, D. R.; Martinez, U.; Sherehiy, A.; Kappera, R.; Martinez-Garcia, A.; Schulze, R. K.; Jasinski, J.; Zhang, J.; Gupta, R. K.; Lou, J. et al. Efficient hydrogen evolution in transition metal dichalcogenides via a simple one-step hydrazine reaction. Nat. Commun. 2016, 7, 11857.

Nano Research
Pages 751-761
Cite this article:
Ou G, Fan P, Ke X, et al. Defective molybdenum sulfide quantum dots as highly active hydrogen evolution electrocatalysts. Nano Research, 2018, 11(2): 751-761. https://doi.org/10.1007/s12274-017-1684-2

748

Views

83

Crossref

N/A

Web of Science

81

Scopus

5

CSCD

Altmetrics

Received: 30 March 2017
Revised: 15 May 2017
Accepted: 16 May 2017
Published: 27 July 2017
© Tsinghua University Press and Springer-Verlag GmbH Germany 2017
Return