Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
A novel lightweight three-dimensional (3D) composite anode for a fast-charging/discharging Li-ion battery (LIB) was fabricated entirely using one-dimensional (1D) nanomaterials, i.e., Cu nanowires (CuNWs) and multi-walled C nanotubes (MWCNTs). Because of the excellent electrical conductivity, high-aspect ratio structures, and large surface areas of these nanomaterials, the CuNW-MWCNT composite (CNMC) with 3D structure provides significant advantages regarding the transport pathways for both electrons and ions. As an advanced binder-free anode, a CuNW-MWCNT composite film with a controllable thickness (~600 μm) exhibited a considerably low sheet resistance, and internal cell resistance. Furthermore, the random CuNW network with 3D structure acting as a rigid framework not only prevented MWCNT shrinkage and expansion due to aggregation and swelling but also minimized the effect of the volume change during the charge/discharge process. Both a half cell and a full cell of LIBs with the CNMC anode exhibited high specific capacities and Coulombic efficiencies, even at a high current. More importantly, we for the first time overcame the limitation of MWCNTs as anode materials for fast-charging/discharging LIBs (both half cells and full cells) by employing CuNWs, and the resulting anode can be applied to flexible LIBs. This innovative anode structure can lead to the development of ultrafast chargeable LIBs for electric vehicles.
Seba, T. Clean Disruption of Energy and Transportation: How Silicon Valley Will Make Oil, Nuclear, Natural Gas, Coal, Electric Utilities and Conventional Cars Obsolete by 2030; Silicon Valley, Clean Planet Ventures: California, 2014.
Burns, L. D. Sustainable mobility: A vision of our transport future. Nature 2013, 497, 181-182.
Li, L.; Gao, C. T.; Kovalchuk, A.; Peng, Z. W.; Ruan, G. D.; Yang, Y.; Fei, H. L.; Zhong, Q. F.; Li, Y. L.; Tour, J. M. Sandwich structured graphene-wrapped FeS-graphene nanoribbons with improved cycling stability for lithium ion batteries. Nano Res. 2016, 9, 2904-2911.
Jia, X. L.; Lu, Y. F.; Wei, F. Confined growth of Li4Ti5O12 nanoparticles in nitrogen-doped mesoporous graphene fibers for high-performance lithium-ion battery anodes. Nano Res. 2016, 9, 230-239.
Kim, C.; Jung, J. W.; Yoon, K. R.; Youn, D. Y.; Park, S.; Kim, I. D. A high-capacity and long-cycle-life lithium-ion battery anode architecture: Silver nanoparticle-decorated SnO2/NiO nanotubes. ACS Nano 2016, 10, 11317-11326.
Liu, W.; Oh, P.; Liu, X. E.; Lee, M. -J.; Cho, W.; Chae, S.; Kim, Y.; Cho, J. Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries. Angew. Chem., Int. Ed. 2015, 54, 4440-4457.
Xu, J. T.; Dou, S. X.; Liu, H. K.; Dai, L. M. Cathode materials for next generation lithium ion batteries. Nano Energy 2013, 2, 439-442.
Chang, X. H.; Wang, T.; Liu, Z. L.; Zheng, X. Y.; Zheng, J.; Li, X. G. Ultrafine Sn nanocrystals in a hierarchically porous N-doped carbon for lithium ion batteries. Nano Res. 2017, 10, 1950-1958.
Kim, W. -S.; Choi, J.; Hong, S. -H. Meso-porous silicon-coated carbon nanotube as an anode for lithium-ion battery. Nano Res. 2016, 9, 2174-2181.
Balogun, M. -S.; Qiu, W. T.; Luo, Y.; Meng, H.; Mai, W. J.; Onasanya, A.; Olaniyi, T. K.; Tong, Y. X. A review of the development of full cell lithium-ion batteries: The impact of nanostructured anode materials. Nano Res. 2016, 9, 2823-2851.
Longo, M.; Zaninelli, D.; Viola, F.; Romano, P.; Miceli, R.; Caruso, M.; Pellitteri, F. Recharge stations: A review. In Proceedings of the 11th International Conference on Ecological Vehicles and Renewable Energies (EVER), Monte Carlo, Monaco, 2016, pp 1-8.
Thess, A.; Lee, R.; Nikolaev, P.; Dai, H. J.; Petit, P.; Robert, J.; Xu, C. H.; Lee, Y. H.; Kim, S. G.; Rinzler, A. G. et al. Crystalline ropes of metallic carbon nanotubes. Science 1996, 273, 483-487.
Cui, L. -F.; Yang, Y.; Hsu, C. -M.; Cui, Y. Carbon-silicon core-shell nanowires as high capacity electrode for lithium ion batteries. Nano Lett. 2009, 9, 3370-3374.
de las Casas, C.; Li, W. Z. A review of application of carbon nanotubes for lithium ion battery anode material. J. Power Sources 2012, 208, 74-85.
Ko, S.; Lee, J. -I.; Yang, H. S.; Park, S.; Jeong, U. Mesoporous CuO particles threaded with CNTs for high-performance lithium-ion battery anodes. Adv. Mater. 2012, 24, 4451-4456.
Yin, Z. X.; Lee, C.; Cho, S.; Yoo, J.; Piao, Y. Z.; Kim, Y. S. Facile synthesis of oxidation-resistant copper nanowires toward solution-processable, flexible, foldable, and free-standing electrodes. Small 2014, 10, 5047-5052.
Yin, Z. X.; Song, S. K.; You, D. J.; Ko, Y.; Cho, S.; Yoo, J.; Park, S. Y.; Piao, Y. Z.; Chang, S. T.; Kim, Y. S. Novel synthesis, coating, and networking of curved copper nanowires for flexible transparent conductive electrodes. Small 2015, 11, 4576-4583.
Yin, Z. X.; Song, S. K.; Cho, S.; You, D. J.; Yoo, J.; Chang, S. T.; Kim, Y. S. Curved copper nanowires-based robust flexible transparent electrodes via all-solution approach. Nano Res. 2017, 9, 3077-3091.
Sun, J. -J.; Zhao, H. -Z.; Yang, Q. -Z.; Song, J.; Xue, A. A novel layer-by-layer self-assembled carbon nanotube-based anode: Preparation, characterization, and application in microbial fuel cell. Electrochim. Acta 2010, 55, 3041-3047.
Mu, Q. X.; Broughton, D. L.; Yan, B. Endosomal leakage and nuclear translocation of multiwalled carbon nanotubes: Developing a model for cell uptake. Nano Lett. 2009, 9, 4370-4375.
Won, Y.; Kim, A.; Lee, D.; Yang, W.; Woo, K.; Jeong, S.; Moon, J. Annealing-free fabrication of highly oxidation- resistive copper nanowire composite conductors for photovoltaics. NPG Asia Mater. 2014, 6, e105.
Zhang, W.; Yin, Z. X.; Chun, A.; Yoo, J.; Kim, Y. S.; Piao, Y. Z. Bridging oriented copper nanowire-graphene composites for solution-processable, annealing-free, and air-stable flexible electrodes. ACS Appl. Mater. Interfaces 2016, 8, 1733-1741.
Cho, S. -J.; Choi, K. -H.; Yoo, J. -T.; Kim, J. -H.; Lee, Y. -H.; Chun, S. -J.; Park, S. -B.; Choi, D. -H.; Wu, Q. L.; Lee, S. -Y. et al. Hetero-nanonet rechargeable paper batteries: Toward ultrahigh energy density and origami foldability. Adv. Funct. Mater. 2015, 25, 6029-6040.
Dees, D. W.; Kawauchi, S.; Abraham, D. P.; Prakash, J. Analysis of the galvanostatic intermittent titration technique (GITT) as applied to a lithium-ion porous electrode. J. Power Sources 2009, 189, 263-268.
Doughty, D. H.; Roth, E. P. A general discussion of Li ion battery safety. Electrochem. Soc. Interface 2012, 21, 37-44.
Hwang, C.; Kim, T. -H.; Cho, Y. -G.; Kim, J.; Song, H. -K. All-in-one assembly based on 3D-intertangled and cross- jointed architectures of Si/Cu 1D-nanowires for lithium ion batteries. Sci. Rep. 2015, 5, 8623.
Lu, L. -L.; Ge, J.; Yang, J. -N.; Chen, S. -M.; Yao, H. B.; Zhou, F.; Yu, S. -H. Free-standing copper nanowire network current collector for improving lithium anode performance. Nano Lett. 2016, 16, 4431-4437.
Yu, S. -H.; Lee, S. H.; Lee, D. J.; Sung, Y. -E.; Hyeon, T. Conversion reaction-based oxide nanomaterials for lithium ion battery anodes. Small 2016, 12, 2146-2172.
Qin, G. H.; Ma, Q. Q.; Wang, C. Y. A porous C/LiFePO4/multiwalled carbon nanotubes cathode material for lithium ion batteries. Electrochim. Acta 2014, 115, 407-415.
Luo, S.; Luo, Y. F.; Wu, H. C.; Li, M. Y.; Yan, L. J.; Jiang, K. L.; Liu, L.; Li, Q. Q.; Fan, S. S.; Wang, J. P. Self-assembly of 3D carbon nanotube sponges: A simple and controllable way to build macroscopic and ultralight porous architectures. Adv. Mater. 2017, 29, 1603549.
Yoon, S.; Lee, S.; Kim, S.; Park, K. -W.; Cho, D.; Jeong, Y. Carbon nanotube film anodes for flexible lithium ion batteries. J. Power Sources 2015, 279, 495-501.
Cui, L. -F.; Hu, L. B.; Choi, J. W.; Cui, Y. Light-weight free-standing carbon nanotube-silicon films for anodes of lithium ion batteries. ACS Nano 2010, 4, 3671-3678.
Song, T. -B.; Chen, Y.; Chung, C. -H.; Yang, Y. M.; Bob, B.; Duan, H. -S.; Li, G.; Tu, K. -N.; Huang, Y.; Yang, Y. Nanoscale joule heating and electromigration enhanced ripening of silver nanowire contacts. ACS Nano 2014, 8, 2804-2811.
Pan, Z. Y.; Ren, J.; Guan, G. Z.; Fang, X.; Wang, B. J.; Doo, S. G.; Son, I. H.; Huang, X. L.; Peng, H. S. Synthesizing nitrogen-doped core-sheath carbon nanotube films for flexible lithium ion batteries. Adv. Energy Mater. 2016, 6, 1600271.
Fu, K.; Yildiz, O.; Bhanushali, H.; Wang, Y. X.; Stano, K.; Xue, L. G.; Zhang, X. W.; Bradford, P. D. Aligned carbon nanotube-silicon sheets: A novel nano-architecture for flexible lithium ion battery electrodes. Adv. Mater. 2013, 25, 5109-5114.
Balogun, M. -S.; Li, C.; Zeng, Y. X.; Yu, M. H.; Wu, Q. L.; Wu, M. M.; Lu, X. H.; Tong, Y. X. Titanium dioxide@titanium nitride nanowires on carbon cloth with remarkable rate capability for flexible lithium-ion batteries. J. Power Sources 2014, 272, 946-953.
Wang, J. G.; Jin, D. D.; Zhou, R.; Li, X.; Liu, X. -R.; Shen, C.; Xie, K. Y.; Li, B. H.; Kang, F. Y.; Wei, B. Q. Highly flexible graphene/Mn3O4 nanocomposite membrane as advanced anodes for Li-ion batteries. ACS Nano 2016, 10, 6227-6234.