Graphical Abstract

The fabrication of ultrathin alloy shells as heterogeneous catalysts to increase the utilization efficiency and enhance the catalytic activity of metal atoms has been recognized as an effective method for the construction of efficient metal nanocatalysts, particularly noble-metal nanocatalysts. In this study, we demonstrate the successful formation of Pd-M (M = Ni, Ag, Cu) alloy shells with a tunable thickness on preformed nanoscale Pd seeds. The success of this synthesis mainly relies on the combination of the slow reduction of "M" ions and the subsequent diffusion of M ad-atoms into the surface lattice of Pd seeds. The composition of the Pd-M alloy shell is easily tuned by changing the type and amount of the added precursor, and the shell thickness is manipulated according to the reaction time. More significantly, the surface structure of these alloy shells is maintained after the reaction, implying that any desired surface structure of Pd-M alloy shells can be prepared by using the appropriate starting materials. Further catalytic evaluation of the hydrogenation of chloronitrobenzenes shows that these alloy surfaces exhibit significantly improved selectivity compared to the Pd seeds. The Pd-Ni alloy surfaces exhibit much better catalytic selectivity (as high as > 99%) than Pd catalysts.
Peterson, E. J.; DeLaRiva, A. T.; Lin, S.; Johnson, R. S.; Guo, H.; Miller, J. T.; Kwak, J. H.; Peden C. H. F.; Kiefer, B.; Allard, L. F. et al. Low-temperature carbon monoxide oxidation catalysed by regenerable atomically dispersed palladium on alumina. Nat. Commun. 2014, 5, 4885.
Mitsudome, T.; Takahashi, Y.; Ichikawa, S.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. Metal-ligand core-shell nanocomposite catalysts for the selective semihydrogenation of alkynes. Angew. Chem. Int. Ed. 2013, 52, 1481-1485.
Kainz, Q. M.; Linhardt, R.; Grass, R. N.; Vilé, G.; Pérez-Ramírez, J.; Stark, W. J.; Reiser, O. Palladium nanoparticles supported on magnetic carbon-coated cobalt nanobeads: Highly active and recyclable catalysts for alkene hydrogenation. Adv. Funct. Mater. 2014, 24, 2020-2027.
Seechurn, C. C. C. J.; Kitching, M. O.; Colacot, T. J.; Snieckus, V. Palladium-catalyzed cross-coupling: A historical contextual perspective to the 2010 Nobel Prize. Angew. Chem. Int. Ed. 2012, 51, 5062-5085.
Mäki-Arvela, P.; Hájek, J.; Salmi, T.; Murzin, D. Y. Chemoselective hydrogenation of carbonyl compounds over heterogeneous catalysts. Appl. Catal. A Gen. 2005, 292, 1-49.
Chan, C. W. A.; Mahadi, A. H.; Li, M. M. J.; Corbos, E. C.; Tang, C.; Jones, G.; Kuo, W. C. H.; Cookson, J.; Brown, C. M.; Bishop, P. T. et al. Interstitial modification of palladium nanoparticles with boron atoms as a green catalyst for selective hydrogenation. Nat. Commun. 2014, 5, 5787.
Jiang, L. C.; Gu, H. Z.; Xu, X. Z.; Yan, X. H. Selective hydrogenation of o-chloronitrobenzene (o-CNB) over supported Pt and Pd catalysts obtained by laser vaporization deposition of bulk metals. J. Mol. Catal. A 2009, 310, 144-149.
Sikhwivhilu, L. M.; Coville, N. J.; Pulimaddi, B. M.; Venkatreddy, J.; Vishwanathan, V. Selective hydrogenation of o-chloronitrobenzene over palladium supported nanotubular titanium dioxide derived catalysts. Catal. Commun. 2007, 8, 1999-2006.
Marshall, S. T.; O'Brien, M.; Oetter, B.; Corpuz, A.; Richards, R. M.; Schwartz, D. K.; Medlin, J. W. Controlled selectivity for palladium catalysts using self-assembled monolayers. Nat. Mater. 2010, 9, 853-858.
Chan, C. W. A.; Xie, Y. L.; Cailuo, N.; Yu, K. M. K.; Cookson, J.; Bishop, P.; Tsang, S. C. New environmentally friendly catalysts containing Pd-interstitial carbon made from Pd-glucose precursors for ultraselective hydrogenations in the liquid phase. Chem. Commun. 2011, 47, 7971-7973.
Kesavan, L.; Tiruvalam, R.; Rahim, M. H. A.; Saiman, M. I. B.; Enache, D. I.; Jenkins, R. L.; Dimitratos, N.; Lopez-Sanchez, J. A.; Taylor, S. H.; Knight, D. W. et al. Solvent-free oxidation of primary carbon-hydrogen bonds in toluene using Au-Pd alloy nanoparticles. Science 2011, 331, 195-199.
Jin, M. S.; Liu, H. Y.; Zhang, H.; Xie, Z. X.; Liu, J. Y.; Xia, Y. N. Synthesis of Pd nanocrystals enclosed by {100} facets and with sizes < 10 nm for application in CO oxidation. Nano Res. 2011, 4, 83-91.
Jin, M. S.; Zhang, H.; Xie, Z. X.; Xia, Y. N. Palladium nanocrystals enclosed by {100} and {111} facets in controlled proportions and their catalytic activities for formic acid oxidation. Energy Environ. Sci. 2012, 5, 6352-6357.
Jin, M. S.; Zhang, H.; Xie, Z. X.; Xia, Y. N. Palladium concave nanocubes with high-index facets and their enhanced catalytic properties. Angew. Chem. Int. Ed. 2011, 50, 7850-7854.
Zhang, Z. R.; Wang, Z. N.; Zhang, H.; Wang, C. Q.; Yin, Y. D.; Jin, M. S. Monitoring the shape evolution of Pd nanocubes to octahedra by PdS frame markers. Nanoscale 2014, 6, 3518-3521.
Zhang Z. R.; Wang, Z. N.; He, S. N.; Wang, C. Q.; Jin M. S.; Yin, Y. D. Redox reaction induced Ostwald ripening for size- and shape-focusing of palladium nanocrystals. Chem. Sci. 2015, 6, 5197-5203.
Cárdenas-Lizana, F.; Hao, Y. F.; Crespo-Quesada, M.; Yuranov, I.; Wang, X. D.; Keane, M. A.; Kiwi-Minsker, L. Selective gas phase hydrogenation of p-chloronitrobenzene over Pd catalysts: Role of the support. ACS Catal. 2013, 3, 1386-1396.
Zou, J. J.; Xiong, Z. Q.; Wang, L.; Zhang, X. W.; Mi, Z. T. Preparation of Pd-B/γ-Al2O3 amorphous catalyst for the hydrogenation of tricyclopentadiene. J. Mol. Catal. A 2007, 271, 209-215.
Niu, W. X.; Gao, Y. J.; Zhang, W. Q.; Yan, N.; Lu, X. M. Pd-Pb alloy nanocrystals with tailored composition for semihydrogenation: Taking advantage of catalyst poisoning. Angew. Chem. Int. Ed. 2015, 54, 8271-8274.
Chen, G. X.; Xu, C. F.; Huang, X. Q.; Ye, J. Y.; Gu, L.; Li, G.; Tang, Z. C.; Wu, B. H.; Yang, H. Y.; Zhao, Z. P. et al. Interfacial electronic effects control the reaction selectivity of platinum catalysts. Nat. Mater. 2016, 15, 564-569.
Habas, S. E.; Lee, H.; Radmilovic, V.; Somorjai, G. A.; Yang, P. D. Shaping binary metal nanocrystals through epitaxial seeded growth. Nat. Mater. 2007, 6, 692-697.
Xu, J.; White, T.; Li, P.; He, C. H.; Yu, J. G.; Yuan, W. K.; Han, Y. F. Biphasic Pd-Au alloy catalyst for low-temperature CO oxidation. J. Am. Chem. Soc. 2010, 132, 10398-10406.
Chen, A. C.; Holt-Hindle, P. Platinum-based nanostructured materials: Synthesis, properties, and applications. Chem. Rev. 2010, 110, 3767-3804.
Yin, A. X.; Min, X. Q.; Zhang, Y. W.; Yan. C. H. Shape-selective synthesis and facet-dependent enhanced electrocatalytic activity and durability of monodisperse Sub-10 nm Pt-Pd tetrahedrons and cubes. J. Am. Chem. Soc. 2011, 133, 3816-3819.
Zhang, L.; Zhang, J. W.; Kuang, Q.; Xie, S. F.; Jiang, Z. Y.; Xie, Z. X.; Zheng, L. S. Cu2+-assisted synthesis of hexoctahedral Au-Pd alloy nanocrystals with high-index facets. J. Am. Chem. Soc. 2011, 133, 17114-17117.
Huang, X. Q.; Li, Y. J.; Li, Y. J.; Zhou, H. L.; Duan, X. F.; Huang, Y. Synthesis of PtPd bimetal nanocrystals with controllable shape, composition, and their tunable catalytic properties. Nano Lett. 2012, 12, 4265-4270.
Rong, H. P., Cai, S. F., Niu, Z. Q.; Li, Y. D. Composition-dependent catalytic activity of bimetallic nanocrystals: AgPd-catalyzed hydrodechlorination of 4-chlorophenol. ACS Catal. 2013, 3, 1560-1563.
Wang, S. B., Zhu, W., Ke, J., Lin, M.; Zhang, Y. W. Pd-Rh nanocrystals with tunable morphologies and compositions as efficient catalysts toward Suzuki cross-coupling reactions. ACS Catal. 2014, 4, 2298-2306.
Wang, L. B.; Zhao, S. T.; Liu, C. X.; Li, C.; Li, X.; Li, H. L.; Wang, Y. C.; Ma, C.; Li, Z. Y.; Zeng, J. Aerobic oxidation of cyclohexane on catalysts based on twinned and single-crystal Au75Pd25 bimetallic nanocrystals. Nano Lett. 2015, 15, 2875-2880.
Zhang, L.; Su, H. Y.; Sun, M.; Wang, Y. C.; Wu, W. L.; Yu, T.; Zeng, J. Concave Cu-Pd bimetallic nanocrystals: Ligand-based Co-reduction and mechanistic study. Nano Res. 2015, 8, 2415-2430.
Long, R.; Li, Y.; Liu, Y.; Chen, S. M.; Zheng, X. S.; Gao, C.; He, C. H.; Chen, N. S.; Qi, Z. M.; Song, L. et al. Isolation of Cu atoms in Pd lattice: Forming highly selective sites for photocatalytic conversion of CO2 to CH4. J. Am. Chem. Soc. 2017, 139, 4486-4492.
Li, Y. P.; Chen, S. M.; Long, R.; Ju, H. X.; Wang, Z. W.; Yu, X. X.; Gao, F. Y.; Cai, Z. J.; Wang, C. M.; Xu, Q. et al. Near-surface dilution of trace Pd atoms to facilitate Pd-H bond cleavage for giant enhancement of electrocatalytic hydrogen evolution. Nano Energy 2017, 34, 306-312.
Chen, C.; Kang, Y. J.; Huo, Z. Y.; Zhu, Z. W.; Huang, W. Y.; Xin, H. L.; Snyder, J.; Li, D. G.; Herron, J. A.; Mavrikakis, M. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014, 343, 1339-1343.
Huang, X. Q.; Zhao, Z. P.; Cao, L.; Chen, Y.; Zhu, E. B.; Lin, Z. Y.; Li, M. F.; Yan, A. M.; Zettl, A.; Wang, Y. M. et al. High-performance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction. Science 2015, 348, 1230-1234.
Boes, J. R.; Kondratyuk, P.; Yin, C. R.; Miller, J. B.; Gellman, A. J.; Kitchin, J. R. Core level shifts in Cu-Pd alloys as a function of bulk composition and structure. Surf. Sci. 2015, 640, 127-132.
Ferrari, P.; Diaz-Droguett, D. E.; Rojas, S.; Cabrera, A. L. Inhibition of hydrogen absorption in bulk Pd by the formation of Ru-Pd surface alloy. Thin Solid Films 2014, 550, 732-737.
Luo, W. H.; Sankar, M.; Beale, A. M.; He, Q.; Kiely, C. J.; Bruijnincx, P. C. A.; Weckhuysen, B. M. High performing and stable supported nano-alloys for the catalytic hydrogenation of levulinic acid to γ-valerolactone. Nat. Commun. 2015, 6, 6540.
Zhang, N.; Bu, L. Z.; Guo, S. J.; Guo, J.; Huang, X. Q. Screw thread-like platinum-popper nanowires bounded with high-index facets for efficient electrocatalysis. Nano Lett. 2016, 16, 5037-5043.
Li, J. M.; Liu, J. Y.; Yang, Y.; Qin, D. Bifunctional Ag@Pd-Ag nanocubes for highly sensitive monitoring of catalytic reactions by surface-enhanced Raman spectroscopy. J. Am. Chem. Soc. 2015, 137, 7039-7042.
Guo, S. J.; Zhang, S.; Su, D.; Sun, S. H. Seed-mediated synthesis of core/shell FePtM/FePt (M = Pd, Au) nanowires and their electrocatalysis for oxygen reduction reaction. J. Am. Chem. Soc. 2013, 135, 13879-13884.
Chen, W.; Yu, R.; Li, L. L.; Wang, A. N.; Peng, Q.; Li, Y. D. A seed-based diffusion route to monodisperse intermetallic CuAu nanocrystals. Angew. Chem. Int. Ed. 2010, 49, 2917-2921.
Niu, Z. Q.; Wang, D. S.; Yu, R.; Peng, Q.; Li, Y. D. Highly branched Pt-Ni nanocrystals enclosed by stepped surfacefor methanol oxidation. Chem. Sci. 2012, 3, 1925-1929.
Liu, H. L.; Nosheen, F.; Wang, X. Noble metal alloy complex nanostructures: Controllable synthesis and their electrochemical property. Chem. Soc. Rev. 2015, 44, 3056-3078.
Liu, X. W.; Wang, D. S.; Li, Y. D. Synthesis and catalytic properties of bimetallic nanomaterials with various architectures. Nano Today 2012, 7, 448-466.
Li, X.; Wang, Z. N.; Zhang, Z. R.; Yang, G.; Jin, M. S.; Chen, Q.; Yin, Y. D. Construction of Au-Pd alloy shells for enhanced catalytic performance toward alkyne semihydrogenation reactions. Mater. Horiz. 2017, 4, 584-590.
Lim, B.; Kobayashi, H.; Yu, T.; Wang, J. G.; Kim, M. J.; Li, Z. Y.; Rycenga, M.; Xia, Y. N. Synthesis of Pd-Au bimetallic nanocrystals via controlled overgrowth. J. Am. Chem. Soc. 2010, 132, 2506-2507.
Yang, Y.; Liu, J. Y.; Fu, Z. W.; Qin, D. Galvanic replacement-free deposition of Au on Ag for core-shell nanocubes with enhanced chemical stability and SERS activity. J. Am. Chem. Soc. 2014, 136, 8153-8156.
Li, X.; Chen, Q.; Wang, M. Y.; Cao, Z. M.; Zhan, Q.; He, T. O.; Kuang, Q.; Yin, Y. D.; Jin, M. S. Coordination effect assisted synthesis of ultrathin Pt layers on second metal nanocrystals as efficient oxygen reduction electrocatalysts. J. Mater. Chem. A 2016, 4, 13033-13039.
Zhang, L.; Roling, L. T.; Wang, X.; Vara, M.; Chi, M. F.; Liu, J. Y.; Choi, S. I.; Park, J.; Herron, J. A.; Xie, Z. X. et al. Platinum-based nanocages with subnsanometer-thick walls and well-defined, controllable facets. Science 2015, 349, 412-416.
Xie, S. F.; Lu, N.; Xie, Z. X.; Wang, J. G.; Kim, M. J.; Xia, Y. N. Synthesis of Pd-Rh core-frame concave nanocubes and their conversion to Rh cubic nanoframes by selective etching of the Pd cores. Angew. Chem. Int. Ed. 2012, 51, 10266-10270.
Jin, M. S.; Zhang, H.; Wang, J. G.; Zhong, X. L.; Lu, N.; Li, Z. Y.; Xie, Z. X.; Kim, M. J.; Xia, Y. N. Copper can still be epitaxially deposited on palladium nanocrystals to generate core-shell nanocubes despite their large lattice mismatch. ACS Nano 2012, 6, 2566-2573.
Zhou, S.; Li, J. H.; Gilroy, K. D.; Tao, J.; Zhu, C. L.; Yang, X.; Sun, X. J.; Xia, Y. N. Facile synthesis of silver nanocubes with sharp corners and edges in an aqueous solution. ACS Nano 2016, 10, 9861-9870.
Zhang, Q.; Li, W. Y.; Moran, C.; Zeng, J.; Chen, J. Y.; Wen, L. P.; Xia, Y. N. Seed-mediated synthesis of Ag nanocubes with controllable edge lengths in the range of 30-200 nm and comparison of their optical properties. J. Am. Chem. Soc. 2010, 132, 11372-11378.
Skrabalak, S. E.; Au, L.; Li, X. D.; Xia, Y. N. Facile synthesis of Ag nanocubes and Au nanocages. Nat. Protoc. 2007, 2, 2182-2190.
Zhao, W. G.; Yang, L. N.; Yin, Y. D.; Jin, M. S. Thermodynamic controlled synthesis of intermetallic Au3Cu alloy nanocrystals from Cu microparticles. J. Mater. Chem. A 2014, 2, 902-906.
Denton, A. R.; Ashcroft, N. W. Vegard's law. Phys. Rev. A 1991, 43, 3161-3164.
Zhang, G. R.; Zhao, D.; Feng, Y. Y.; Zhang, B. S.; Su, D. S.; Liu, G.; Xu, B. Q. Catalytic Pt-on-Au nanostructures: Why Pt becomes more active on smaller Au particles. ACS Nano 2012, 6, 2226-2236.
Zhou, W. P.; Lewera, A.; Larsen, R.; Masel, R. I.; Bagus, P. S.; Wieckowski, A. Size effects in electronic and catalytic properties of unsupported palladium nanoparticles in electrooxidation of formic acid. J. Phys. Chem. B 2006, 110, 13393-13398.
Stamenkovic, V. R.; Mun, B. S.; Arenz, M.; Mayrhofer, K. J. J.; Lucas, C. A.; Wang, G. F.; Ross, P. N.; Markovic, N. M. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat. Mater. 2007, 6, 241-247.
Liu, S. L.; Zhang, Q. H.; Li, Y. F.; Han, M.; Gu, L.; Nan, C. W.; Bao, J. C.; Dai, Z. H. Five-fold twinned Pd2NiAg nanocrystals with increased surface Ni site availability to improve oxygen reduction activity. J. Am. Chem. Soc. 2015, 137, 2820-2823.
Winans C. F. Nickel as a catalyst for the hydrogenation of aromatic halogen compounds. J. Am. Chem. Soc. 1939, 61, 3564-3565.
Wang, C.; Qiu, J. S.; Liang, C. H.; Xing, L.; Yang, X. M. Carbon nanofiber supported Ni catalysts for the hydrogenation of chloronitrobenzenes. Catal. Commun. 2008, 9, 1749-1753.
Zhang, P.; Yu, C.; Fan, X. M.; Wang, X. N.; Ling, Z.; Wang, Z. H.; Qiu, J. S. Magnetically recoverable Ni/C catalysts with hierarchical structure and high-stability for selective hydrogenation of nitroarenes. Phys. Chem. Chem. Phys. 2015, 17, 145-150.
Furukawa, S.; Ehara, K.; Ozawa K.; Komatsu, T. A study on the hydrogen activation properties of Ni-based intermetallics: A relationship between reactivity and the electronic state. Phys. Chem. Chem. Phys. 2014, 16, 19828-19831.