Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Metal oxide/graphene nanocomposites are emerging as promising materials for developing room-temperature gas sensors. However, the unsatisfactory performances owing to the relatively low sensitivity, slow response, and recovery kinetics limit their applications. Herein, a highly sensitive and rapidly responding room-temperature NO2 gas sensor based on WO3 nanorods/sulfonated reduced graphene oxide (S-rGO) was prepared via a simple and cost-effective hydrothermal method. The optimal sensor response of the WO3/S-rGO sensor toward 20 ppm NO2 is 149% in 6 s, which is 4.7 times higher and 100 times faster than that of the corresponding WO3/rGO sensors. In addition, the sensor exhibits excellent reproducibility, selectivity, and extremely fast recovery kinetics. The mechanism of the WO3/S-rGO nanocomposite gas sensor is investigated in detail. In addition to the high transport capability of S-rGO as well as its excellent NO2 adsorption ability, the superior sensing performance of the S-rGO/WO3 sensor can be attributed to the favorable charge transfer occurring at the S-rGO/WO3 interfaces. We believe that the strategy of compositing a metal oxide with functionalized graphene provides a new insight for the future development of room-temperature gas sensors.
Guarnieri, M.; Balmes, J. R. Outdoor air pollution and asthma. Lancet 2014, 383, 1581-1592.
Ou, J. Z.; Yao, C. K.; Rotbart, A.; Muir, J. G.; Gibson, P. R.; Kalantar-zadeh, K. Human intestinal gas measurement systems: In vitro fermentation and gas capsules. Trends Biotechnol. 2015, 33, 208-213.
Puckett, J. L.; George, S. C. Partitioned exhaled nitric oxide to non-invasively assess asthma. Respir. Physiol. Neurobiol. 2008, 163, 166-177.
Andringa, A. M.; Piliego, C.; Katsouras, I.; Blom, P. W. M.; de Leeuw, D. M. NO2 detection and real-time sensing with field-effect transistors. Chem. Mater. 2014, 26, 773-785.
Miller, D. R.; Akbar, S. A.; Morris, P. A. Nanoscale metal oxide-based heterojunctions for gas sensing: A review. Sensor. Actuat. B: Chem. 2014, 204, 250-272.
Xiong, Y.; Chen, W. P.; Li, Y. S.; Cui, P.; Guo, S. S.; Chen, W.; Tang, Z. L.; Yan, Z. J.; Zhang, Z. Y. Contrasting room-temperature hydrogen sensing capabilities of Pt-SnO2 and Pt-TiO2 composite nanoceramics. Nano Res. 2016, 9, 3528-3535.
Zhang, J.; Liu, X. H.; Neri, G.; Pinna, N. Nanostructured materials for room-temperature gas sensors. Adv. Mater. 2016, 28, 795-831.
Zhang, H.; Feng, J. C.; Fei, T.; Liu, S.; Zhang, T. SnO2 nanoparticles-reduced graphene oxide nanocomposites for NO2 sensing at low operating temperature. Sensor. Actuat. B: Chem. 2014, 190, 472-478.
Sonker, R. K.; Sabhajeet, S. R.; Singh, S.; Yadav, B. C. Synthesis of ZnO nanopetals and its application as NO2 gas sensor. Mater. Lett. 2015, 152, 189-191.
Kida, T.; Nishiyama, A.; Hua, Z. Q.; Suematsu, K.; Yuasa, M.; Shimanoe, K. WO3 nanolamella gas sensor: Porosity control using SnO2 nanoparticles for enhanced NO2 sensing. Langmuir 2014, 30, 2571-2579.
Akiyama, M.; Tamak, J.; Miura, N.; Yamazoe, N. Tungsten oxide-based semiconductor sensor highly sensitive to NO and NO2. Chem. Lett. 1991, 20, 1611-1614.
You, Y.; Sun, Y. F.; Ma, J.; Guan, Y.; Sun, J. M.; Du, Y.; Lu, G. Y. Highly sensitive NO2 sensor based on square-like tungsten oxide prepared with hydrothermal treatment. Sensor. Actuat. B: Chem. 2011, 157, 401-407.
Srivastava, S.; Jain, K.; Singh, V. N.; Singh, S.; Vijayan, N.; Dilawar, N.; Gupta, G.; Senguttuvan, T. D. Faster response of NO2 sensing in graphene-WO3 nanocomposites. Nanotechnology 2012, 23, 205501.
An, X. Q.; Yu, J. C.; Wang, Y.; Hu, Y. M.; Yu, X. L.; Zhang, G. J. WO3 nanorods/graphene nanocomposites for high-efficiency visible-light-driven photocatalysis and NO2 gas sensing. J. Mater. Chem. 2012, 22, 8525-8531.
Geim, A. K.; Novoselov, K. S. The rise of graphene. Nature 2007, 6, 183-191.
Katsnelson, M. I. Graphene: Carbon in two dimensions. Mater. Today 2007, 10, 20-27.
Rao, C. N. R.; Biswas, K.; Subrahmanyam, K. S.; Govindaraj, A. Graphene, the new nanocarbon. J. Mater. Chem. 2009, 19, 2457-2469.
Cagliani, A.; Mackenzie, D. M. A.; Tschammer, L. K.; Pizzocchero, F.; Almdal, K.; Bøggild, P. Large-area nanopatterned graphene for ultrasensitive gas sensing. Nano Res. 2014, 7, 743-754.
Tammanoon, N.; Wisitsoraat, A.; Sriprachuabwong, C.; Phokharatkul, D.; Tuantranont, A.; Phanichphant, S.; Liewhiran, C. Ultrasensitive NO2 sensor based on Ohmic metal-semiconductor interfaces of electrolytically exfoliated graphene/flame-spray-made SnO2 nanoparticles composite operating at low temperatures. ACS Appl. Mater. Interfaces 2015, 7, 24338-24352.
Yi, J.; Lee, J. M.; Park, W. I. Vertically aligned ZnO nanorods and graphene hybrid architectures for high-sensitive flexible gas sensors. Sensor. Actuat. B: Chem. 2011, 155, 264-269.
Choi, S. J.; Fuchs, F.; Demadrille, R.; Grévin, B.; Jang, B. H.; Lee, S. J.; Lee, J. H.; Tuller, H. L.; Kim, I. D. Fast responding exhaled-breath sensors using WO3 hemitubes functionalized by graphene-based electronic sensitizers for diagnosis of diseases. ACS Appl. Mater. Interfaces 2014, 6, 9061-9070.
Yang, W.; Wan, P.; Zhou, X. D.; Hu, J. M.; Guan, Y. F.; Feng, L. Additive-free synthesis of In2O3 cubes embedded into graphene sheets and their enhanced NO2 sensing performance at room temperature. ACS Appl. Mater. Interfaces 2014, 6, 21093-21100.
Deng, S. Z.; Tjoa, V.; Fan, H. M.; Tan, H. R.; Sayle, D. C.; Olivo, M.; Mhaisalkar, S.; Wei, J.; Sow, C. H. Reduced graphene oxide conjugated Cu2O nanowire mesocrystals for high-performance NO2 gas sensor. J. Am. Chem. Soc. 2012, 134, 4905-4917.
Xia, Y.; Wang, J.; Xu, J. L.; Li, X.; Xie, D.; Xiang, L.; Komarneni, S. Confined formation of ultrathin ZnO nanorods/ reduced graphene oxide mesoporous nanocomposites for high-performance room-temperature NO2 sensors. ACS Appl. Mater. Interfaces 2016, 8, 35454-35463.
Liu, X.; Cui, J. S.; Sun, J. B.; Zhang, X. T. 3D graphene aerogel-supported SnO2 nanoparticles for efficient detection of NO2. RSC Adv. 2014, 4, 22601-22605.
Liu, S.; Yu, B.; Zhang, H.; Fei, T.; Zhang, T. Enhancing NO2 gas sensing performances at room temperature based on reduced graphene oxide-ZnO nanoparticles hybrids. Sensor. Actuat. B: Chem. 2014, 202, 272-278.
Jie, X. Q.; Zeng, D. W.; Zhang, J.; Xu, K.; Wu, J. J.; Zhu, B. K.; Xie, C. S. Graphene-wrapped WO3 nanospheres with room-temperature NO2 sensing induced by interface charge transfer. Sensor. Actuat. B: Chem. 2015, 220, 201-209.
Huang, L.; Wang, Z. P.; Zhang, J. K; Pu, J. L.; Lin, Y. J.; Xu, S. H.; Chen, Q.; Shi, W. Z. Fully printed, rapid-response sensors based on chemically modified graphene for detecting NO2 at room temperature. ACS Appl. Mater. Interfaces 2014, 6, 7426-7433.
Yuan, W. J.; Liu, A. R.; Huang, L; Li, C; Shi, G. Q. High-performance NO2 sensors based on chemically modified graphene. Adv. Mater. 2013, 25, 766-771.
Liu, S.; Wang, Z. Y.; Zhang, Y; Li, J. C; Zhang, T. Sulfonated graphene anchored with tin oxide nanoparticles for detection of nitrogen dioxide at room temperature with enhanced sensing performances. Sensor. Actuat. B: Chem. 2016, 228, 134-143.
Si, Y. C.; Samulski, E. T. Synthesis of water soluble graphene. Nano Lett. 2008, 8, 1679-1682.
Hummers Jr, W. S.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339.
Wang, S.; Ang, P. K.; Wang, Z. Q.; Tang, A. L. L.; Thong, J. T. L.; Loh, K. P. High mobility, printable, and solution-processed graphene electronics. Nano Lett. 2010, 10, 92-98.
Dong, B.; Zhong, D. Y.; Chi, L. F.; Fuchs, H. Patterning of conducting polymers based on a random copolymer strategy: Toward the facile fabrication of nanosensors exclusively based on polymers. Adv. Mater. 2005, 17, 2736-2741.
Dong, B.; Lu, N.; Zelsmann M.; Kehagias N.; Fuchs H.; Torres, C. M. S.; Chi, L. F. Fabrication of high-density, large-area conducting-polymer nanostructures. Adv. Funct. Mater. 2006, 16, 1937-1942.
Zhou, W.; Guo, Y. T.; Zhang, H.; Su, Y. J.; Liu, M.; Dong, B. A highly sensitive ammonia sensor based on spinous core-shell PCL-PANI fibers. J. Mater. Sci. 2017, 52, 6554-6566.
Jung, I.; Pelton, M.; Piner, R.; Dikin, D. A.; Stankovich, S.; Watcharotone, S.; Hausner, M.; Ruoff, R. S. Simple approach for high-contrast optical imaging and characterization of graphene-based sheets. Nano Lett. 2007, 7, 3569-3575.
Li, D.; Müller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 2008, 3, 101-105.
Xu, Y. X.; Bai, H.; Lu, G. W.; Li, C.; Shi, G. Q. Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J. Am. Chem. Soc. 2008, 130, 5856-5857.
Lu, J. L.; Li, Y. H.; Li, S. L.; Jiang, S. P. Self-assembled platinum nanoparticles on sulfonic acid-grafted graphene as effective electrocatalysts for methanol oxidation in direct methanol fuel cells. Sci. Rep. 2016, 6, 21530.
Jiang, D. D.; Yao, Q.; McKinney, M. A.; Wilkie, C. A. TGA/FTIR studies on the thermal degradation of some polymeric sulfonic and phosphonic acids and their sodium salts. Polym. Degrad. Stabil. 1999, 63, 423-434.
Yin, W. S.; Ruckenstein, E. Soluble polyaniline co-doped with dodecyl benzene sulfonic acid and hydrochloric acid. Synthetic Met. 2000, 108, 39-46.
Gao, J.; Liu, F.; Liu, Y. L.; Ma, N.; Wang, Z. Q.; Zhang, X. Environment-friendly method to produce graphene that employs vitamin C and amino acid. Chem. Mater. 2010, 22, 2213-2218.
Akhavan, O.; Choobtashani, M.; Ghaderi, E. Protein degradation and RNA efflux of viruses photocatalyzed by graphene-tungsten oxide composite under visible light irradiation. J. Phys. Chem. C 2012, 116, 9653-9659.
Guo, J. J.; Li, Y.; Zhu, S. M.; Chen, Z. X.; Liu, Q. L.; Zhang, D.; Song, D. M.; Song, D. M. Synthesis of WO3@graphene composite for enhanced photocatalytic oxygen evolution from water. RSC Adv. 2012, 2, 1356-1363.
Zhu, S. M.; Liu, X. Y.; Chen, Z. X.; Liu, C. J.; Feng, C. L.; Gu, J. J.; Liu, Q. L.; Zhang, D. Synthesis of Cu-doped WO3 materials with photonic structures for high performance sensors, J. Mater. Chem. 2010, 20, 9126-9132.
Manna, A. K.; Pati, S. K. Tuning the electronic structure of graphene by molecular charge transfer: A computational study. Chem. Asian J. 2009, 4, 855-860.
Chen, N.; Li, X. G.; Wang, X. Y.; Yu, J.; Wang, J.; Tang, Z. N.; Akbar, S. A. Enhanced room temperature sensing of Co3O4-intercalated reduced graphene oxide based gas sensors. Sensor. Actuat. B: Chem. 2013, 188, 902-908.
Huang, Q. W.; Zeng, D. W.; Li, H. Y.; Xie, C. S. Room temperature formaldehyde sensors with enhanced performance, fast response and recovery based on zinc oxide quantum dots/graphene nanocomposites. Nanoscale 2012, 4, 5651-5658.