Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Four kinds of CuO catalysts with well-controlled leaf-like (L-CuO), flower-like (F-CuO), sea-urchin-like (U-CuO), and oatmeal-like (O-CuO) morphologies were synthesized by a facile precipitation method assisted by various chelating ligands. High-resolution transmission electron microscopy and fast Fourier transform infrared spectroscopy indicated that the dominant crystal facets of L-CuO, F-CuO, U-CuO, and O-CuO were {001}, {
Konar, S.; Kalita, H.; Puvvada, N.; Tantubay, S.; Mahto, M. K.; Biswas, S.; Pathak, A. Shape-dependent catalytic activity of CuO nanostructures. J. Catal. 2016, 336, 11-22.
Volanti, D. P.; Felix, A. A.; Orlandi, M. O.; Whitfield, G.; Yang, D. -J.; Longo, E.; Tuller, H. L.; Varela, J. A. The role of hierarchical morphologies in the superior gas sensing performance of CuO-based chemiresistors. Adv. Funct. Mater. 2013, 23, 1759-1766.
Narayanan, R.; El-Sayed, M. A. Shape-dependent catalytic activity of platinum nanoparticles in colloidal solution. Nano Lett. 2004, 4, 1343-1348.
Wang, D. S.; Xie, T.; Li, Y. D. Nanocrystals: Solution-based synthesis and applications as nanocatalysts. Nano Res. 2009, 2, 30-46.
Hu, L. H.; Sun, K. Q.; Peng, Q.; Xu, B. Q.; Li, Y. D. Surface active sites on Co3O4 nanobelt and nanocube model catalysts for CO oxidation. Nano Res. 2010, 3, 363-368.
Wang, Q.; Shang, Y.; Yu, L.; Zou, C.; Yao, W. H.; Zhao, D. Y.; Song, P.; Yang, H.; Guo, L. Facet-dependent Cu2O nanocrystals in manipulating alignment of liquid crystals and photomechanical behaviors. Nano Res. 2016, 9, 2581-2589.
Liu, B.; Ma, Y. R.; Zhao, D. Y.; Xu, L. H.; Liu, F. S.; Zhou, W.; Guo, L. Effects of morphology and concentration of CuS nanoparticles on alignment and electro-optic properties of nematic liquid crystal. Nano Res. 2017, 10, 618-625.
Zaera, F. Nanostructured materials for applications in hetero; geneous catalysis. Chem. Soc. Rev. 2013, 42, 2746-2762.
Zhang, P. Q.; Zhan, Y. G.; Cai, B. X.; Hao, C. C.; Wang, J.; Liu, C. X.; Meng, Z. L.; Yin, Z. L.; Chen, Q. Y. Shape- controlled synthesis of Mn3O4 nanocrystals and their catalysis of the degradation of methylene blue. Nano Res. 2010, 3, 235-243.
Li, J. F.; Bai, H.; Yi, W. C.; Liu, J. Y.; Li, Y. H.; Zhang, Q.; Yang, H. F.; Xi, G. C. Synthesis and facet-dependent photocatalytic activity of strontium titanate polyhedron nanocrystals. Nano Res. 2016, 9, 1523-1531.
Chen, S. L.; Li, D.; Liu, Y. X.; Huang, W. X. Morphology- dependent defect structures and photocatalytic performance of hydrogenated anatase TiO2 nanocrystals. J. Catal. 2016, 341, 126-135.
Wang, C.; Li, Q.; Wang, F. F.; Xia, G. F.; Liu, R. Q.; Li, D. Y.; Li, N.; Spendelow, J. S.; Wu, G. Morphology-dependent performance of CuO anodes via facile and controllable synthesis for lithium-ion batteries. ACS Appl. Mater. Interfaces 2014, 6, 1243-1250.
Fei, Z. Y.; Lu, P.; Feng, X. Z.; Sun, B.; Ji, W. J. Geometrical effect of CuO nanostructures on catalytic benzene combustion. Catal. Sci. Technol. 2012, 2, 1705-1710.
Liu, X. J.; Liu, J. F.; Chang, Z.; Sun, X. M.; Li, Y. D. Crystal plane effect of Fe2O3 with various morphologies on CO catalytic oxidation. Catal. Commun. 2011, 12, 530-534.
Pang, H.; Gao, F.; Lu, Q. Y. Morphology effect on antibacterial activity of cuprous oxide. Chem. Commun. 2009, 1076-1078.
Su, D. W.; Xie, X. Q.; Dou, S. X.; Wang, G. X. CuO single crystal with exposed {001} facets—A highly efficient material for gas sensing and Li-ion battery applications. Sci. Rep. 2014, 4, 5753.
Zhou, K. B.; Wang, R. P.; Xu, B. Q.; Li, Y. D. Synthesis, characterization and catalytic properties of CuO nanocrystals with various shapes. Nanotechnology 2006, 17, 3939-3943.
Rochow, E. G. The direct synthesis of organosilicon compounds. J. Am. Chem. Soc. 1945, 67, 963-965.
Zuckerman, J. J. The direct synthesis of organosilicon compounds. Adv. Inorg. Chem. Radiochem. 1964, 6, 383-432.
Zhang, Y.; Ji, Y. J.; Li, J.; Liu, H. Z.; Zhong, Z. Y.; Su, F. B. Hierarchical zinc-copper oxide hollow microspheres as active Rochow reaction catalysts: The formation and effect of charge transferable interfaces. J. Catal. 2017, 348, 233-245.
Muller, R. One hundred years of organosilicon chemistry. J. Chem. Educ. 1965, 42, 41.
Zhang, Y.; Li, J.; Liu, H. Z.; Ji, Y. J.; Zhong, Z. Y.; Su, F. B. Promoting effect of In2O3 on CuO for the Rochow reaction: The formation of p-n junctions at the hetero-interfaces. J. Catal. 2017, 348, 110-124.
Zhang, Z. L.; Che, H. W.; Gao, J. J.; Wang, Y. L.; She, X. L.; Sun, J.; Gunawan, P.; Zhong, Z. Y.; Su, F. B. Shape- controlled synthesis of Cu2O microparticles and their catalytic performances in the Rochow reaction. Catal. Sci. Technol. 2012, 2, 1207-1212.
Luo, W. X.; Wang, G. R.; Wang, J. F.; Jin, Y. Modification of CuCl catalyst used in the direct synthesis reaction of methyl chlorosilane monomer. Chem. Eng. 2006, 34, 41-44.
Banholzer, W. F.; Lewis, N.; Ward, W. Active site formation in the direct process for methylchlorosilanes. J. Catal. 1986, 101, 405-415.
Zhang, Z. L.; Che, H. W.; Wang, Y. L.; She, X. L.; Sun, J.; Gunawan, P.; Zhong, Z. Y.; Su, F. B. Facile solvothermal synthesis of porous cubic Cu microparticles as copper catalysts for Rochow reaction. ACS Appl. Mater. Interfaces 2012, 4, 1295-1302.
Li, J.; Zhang, Z. L.; Ji, Y. J.; Jin, Z. Y.; Zou, S. Y.; Zhong, Z. Y.; Su, F. B. One-dimensional Cu-based catalysts with layered Cu-Cu2O-CuO walls for the Rochow reaction. Nano Res. 2016, 9, 1377-1392.
Jin, Z. Y.; Li, J.; Shi, L. S.; Ji, Y. J.; Zhong, Z. Y.; Su, F. B. One-pot hydrothermal growth of raspberry-like CeO2 on CuO microsphere as copper-based catalyst for Rochow reaction. Appl. Surf. Sci. 2015, 359, 120-129.
Veer, F.; Kolster, B.; Burgers, W. Diffusion of the Cu3Si phase of the copper-silicon system. Trans. Metall. Soc. AIME 1968, 242, 669-673.
Voorhoeve, R. J. H.; Lips, J. A.; Vlugter, J. C. Mechanism and kinetics of the metal-catalyzed synthesis of methylchlorosilanes: Ⅰ. The synthesis of methylchlorosilanes in a fluid bed. J. Catal. 1964, 3, 414-425.
Wang, C.; Liu, T.; Huang, Y. L.; Wang, G. R.; Wang, J. F. Promoter effects of Zn and Sn in the direct synthesis of methylchlorosilanes. Ind. Eng. Chem. Res. 2013, 52, 5282- 5286.
Voorhoeve, R. J. H.; Vlugter, J. C. Mechanism and kinetics of the metal-catalyzed synthesis of methylchlorosilanes: Ⅲ. The catalytically active form of the copper catalyst. J. Catal. 1965, 4, 123-133.
Bablin, J. M.; Lewis, L. N.; Bui, P.; Gardner, M. Mechanism of the methylchlorosilane reaction: Improved lab reactor design and kinetic data. Ind. Eng. Chem. Res. 2003, 42, 3532-3543.
Burda, C.; Chen, X. B.; Narayanan, R.; El-Sayed, M. A. Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 2005, 105, 1025-1102.
Xu, X. X.; Yang, H.; Liu, Y. N. Self-assembled structures of CuO primary crystals synthesized from Cu(CH3COO)2- NaOH aqueous systems. CrystEngComm 2012, 14, 5289- 5298.
Ganga, B. G.; Varma, M. R.; Santhosh, P. N. Evidence of reduced antiferromagnetic transition in mesocrystals of CuO synthesized by a surfactant-free solution phase method. CrystEngComm 2015, 17, 7086-7093.
Sun, S. D.; Sun, Y. X.; Zhang, X. Z.; Zhang, H. J.; Song, X. P.; Yang, Z. M. A surfactant-free strategy for controllable growth of hierarchical copper oxide nanostructures. CrystEngComm 2013, 15, 5275-5282.
Sun, S. D.; Zhang, X. Z.; Zhang, J.; Wang, L. Q.; Song, X. P.; Yang, Z. M. Surfactant-free CuO mesocrystals with controllable dimensions: Green ordered-aggregation-driven synthesis, formation mechanism and their photochemical performances. CrystEngComm 2013, 15, 867-877.
Dai, Z. R.; Pan, Z. W.; Wang, Z. L. Novel nanostructures of functional oxides synthesized by thermal evaporation. Adv. Funct. Mater. 2003, 13, 9-24.
Chen, Z. P.; Wang, S.; Liu, W. G.; Gao, X. H.; Gao, D. N.; Wang, M. Z.; Wang, S. D. Morphology-dependent perfor; mance of Co3O4 via facile and controllable synthesis for methane combustion. Appl. Catal. A 2016, 525, 94-102.
Yang, Y.; Zhang, S. Z.; Wang, S. W.; Zhang, K. L.; Wang, H. Z.; Huang, J.; Deng, S. B.; Wang, B.; Wang, Y. J.; Yu, G. Ball milling synthesized MnOx as highly active catalyst for gaseous POPs removal: Significance of mechanochemically induced oxygen vacancies. Environ. Sci. Technol. 2015, 49, 4473-4480.
Sun, S. M.; Yang, L.; Pang, G. S.; Feng, S. H. Surface properties of Mg doped LaCoO3 particles with large surface areas and their enhanced catalytic activity for CO oxidation. Appl. Catal. A 2011, 401, 199-203.
Dolle, P.; Tommasini, M.; Jupille, J. The adsorption of oxygen on a cesiated Ni(111) surface: Evidence for the formation of molecularly chemisorbed oxygen species. Surf. Sci. 1989, 211-212, 904-911.
Lischka, M.; Mosch, C.; Groß, A. Tuning catalytic properties of bimetallic surfaces: Oxygen adsorption on pseudomorphic Pt/Ru overlayers. Electrochim. Acta 2007, 52, 2219-2228.
Luo, M. F.; Fang, P.; He, M.; Xie, Y. L. In situ XRD, Raman, and TPR studies of CuO/Al2O3 catalysts for CO oxidation. J. Mol. Catal. A: Chem. 2005, 239, 243-248.
Marko, O. W.; Borah, P. S. Method for quenching silicon spent bed. U.S. Patent 5, 000, 934, March 19, 1991.
Wessel, T. J.; Rethwisch, D. G. Deactivation of CuSi and CuZnSnSi due to coke formation during the direct synthesis of methylchlorosilanes. J. Catal. 1996, 161, 861-866.
Voorhoeve, R. J. H.; Geertsema, B. J. H.; Vlugter, J. C. Mechanism and kinetics of the metal-catalyzed synthesis of methylchlorosilanes: Ⅱ. The kinetics of the copper-catalyzed reaction of methyl chloride and silicon. J. Catal. 1965, 4, 43-55.
Zhou, K. B.; Li, Y. D. Catalysis based on nanocrystals with well-defined facets. Angew. Chem., Int. Ed. 2012, 51, 602-613.