AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Morphology-dependent catalytic properties of nanocupric oxides in the Rochow reaction

Yu Zhang1,2Yongjun Ji1( )Jing Li1,2Hezhi Liu1Xiao Hu3Ziyi Zhong3Fabing Su1
State Key Laboratory of Multiphase Complex SystemsInstitute of Process EngineeringChinese Academy of SciencesBeijing100190China
University of Chinese Academy of SciencesBeijing100049China
Nanyang Environment & Water Research Institute (NEWRI)Nanyang Technological University1 Cleantech LoopCleanTech OneSingapore637141Singapore
Show Author Information

Graphical Abstract

Abstract

Four kinds of CuO catalysts with well-controlled leaf-like (L-CuO), flower-like (F-CuO), sea-urchin-like (U-CuO), and oatmeal-like (O-CuO) morphologies were synthesized by a facile precipitation method assisted by various chelating ligands. High-resolution transmission electron microscopy and fast Fourier transform infrared spectroscopy indicated that the dominant crystal facets of L-CuO, F-CuO, U-CuO, and O-CuO were {001}, {110}, {001}, and {110}, as well as {001} and {110}, respectively. When tested for the Rochow reaction, it was found that their catalytic performances were dependent on their structures. Among the four CuO catalysts, L-CuO exhibited the best catalytic property, along with the strongest adsorption ability for oxygen and highest reducibility, which are mainly because of its largely exposed {001} facet and large specific surface area. In addition, the amount of the Cu3Si alloy phase, which is the most important reaction intermediate that generated in the reacted region of the Si surface, was measured for the different catalysts. Based on the findings, a detailed reaction mechanism was proposed. This work demonstrates that shape-controlled synthesis of oxide catalysts could be an effective strategy to design and develop efficient catalysts.

Electronic Supplementary Material

Download File(s)
nr-11-2-804_ESM.pdf (3.2 MB)

References

1

Konar, S.; Kalita, H.; Puvvada, N.; Tantubay, S.; Mahto, M. K.; Biswas, S.; Pathak, A. Shape-dependent catalytic activity of CuO nanostructures. J. Catal. 2016, 336, 11-22.

2

Volanti, D. P.; Felix, A. A.; Orlandi, M. O.; Whitfield, G.; Yang, D. -J.; Longo, E.; Tuller, H. L.; Varela, J. A. The role of hierarchical morphologies in the superior gas sensing performance of CuO-based chemiresistors. Adv. Funct. Mater. 2013, 23, 1759-1766.

3

Narayanan, R.; El-Sayed, M. A. Shape-dependent catalytic activity of platinum nanoparticles in colloidal solution. Nano Lett. 2004, 4, 1343-1348.

4

Wang, D. S.; Xie, T.; Li, Y. D. Nanocrystals: Solution-based synthesis and applications as nanocatalysts. Nano Res. 2009, 2, 30-46.

5

Hu, L. H.; Sun, K. Q.; Peng, Q.; Xu, B. Q.; Li, Y. D. Surface active sites on Co3O4 nanobelt and nanocube model catalysts for CO oxidation. Nano Res. 2010, 3, 363-368.

6

Wang, Q.; Shang, Y.; Yu, L.; Zou, C.; Yao, W. H.; Zhao, D. Y.; Song, P.; Yang, H.; Guo, L. Facet-dependent Cu2O nanocrystals in manipulating alignment of liquid crystals and photomechanical behaviors. Nano Res. 2016, 9, 2581-2589.

7

Liu, B.; Ma, Y. R.; Zhao, D. Y.; Xu, L. H.; Liu, F. S.; Zhou, W.; Guo, L. Effects of morphology and concentration of CuS nanoparticles on alignment and electro-optic properties of nematic liquid crystal. Nano Res. 2017, 10, 618-625.

8

Zaera, F. Nanostructured materials for applications in hetero; geneous catalysis. Chem. Soc. Rev. 2013, 42, 2746-2762.

9

Zhang, P. Q.; Zhan, Y. G.; Cai, B. X.; Hao, C. C.; Wang, J.; Liu, C. X.; Meng, Z. L.; Yin, Z. L.; Chen, Q. Y. Shape- controlled synthesis of Mn3O4 nanocrystals and their catalysis of the degradation of methylene blue. Nano Res. 2010, 3, 235-243.

10

Li, J. F.; Bai, H.; Yi, W. C.; Liu, J. Y.; Li, Y. H.; Zhang, Q.; Yang, H. F.; Xi, G. C. Synthesis and facet-dependent photocatalytic activity of strontium titanate polyhedron nanocrystals. Nano Res. 2016, 9, 1523-1531.

11

Chen, S. L.; Li, D.; Liu, Y. X.; Huang, W. X. Morphology- dependent defect structures and photocatalytic performance of hydrogenated anatase TiO2 nanocrystals. J. Catal. 2016, 341, 126-135.

12

Wang, C.; Li, Q.; Wang, F. F.; Xia, G. F.; Liu, R. Q.; Li, D. Y.; Li, N.; Spendelow, J. S.; Wu, G. Morphology-dependent performance of CuO anodes via facile and controllable synthesis for lithium-ion batteries. ACS Appl. Mater. Interfaces 2014, 6, 1243-1250.

13

Fei, Z. Y.; Lu, P.; Feng, X. Z.; Sun, B.; Ji, W. J. Geometrical effect of CuO nanostructures on catalytic benzene combustion. Catal. Sci. Technol. 2012, 2, 1705-1710.

14

Liu, X. J.; Liu, J. F.; Chang, Z.; Sun, X. M.; Li, Y. D. Crystal plane effect of Fe2O3 with various morphologies on CO catalytic oxidation. Catal. Commun. 2011, 12, 530-534.

15

Pang, H.; Gao, F.; Lu, Q. Y. Morphology effect on antibacterial activity of cuprous oxide. Chem. Commun. 2009, 1076-1078.

16

Su, D. W.; Xie, X. Q.; Dou, S. X.; Wang, G. X. CuO single crystal with exposed {001} facets—A highly efficient material for gas sensing and Li-ion battery applications. Sci. Rep. 2014, 4, 5753.

17

Zhou, K. B.; Wang, R. P.; Xu, B. Q.; Li, Y. D. Synthesis, characterization and catalytic properties of CuO nanocrystals with various shapes. Nanotechnology 2006, 17, 3939-3943.

18

Rochow, E. G. The direct synthesis of organosilicon compounds. J. Am. Chem. Soc. 1945, 67, 963-965.

19

Zuckerman, J. J. The direct synthesis of organosilicon compounds. Adv. Inorg. Chem. Radiochem. 1964, 6, 383-432.

20

Zhang, Y.; Ji, Y. J.; Li, J.; Liu, H. Z.; Zhong, Z. Y.; Su, F. B. Hierarchical zinc-copper oxide hollow microspheres as active Rochow reaction catalysts: The formation and effect of charge transferable interfaces. J. Catal. 2017, 348, 233-245.

21

Muller, R. One hundred years of organosilicon chemistry. J. Chem. Educ. 1965, 42, 41.

22

Zhang, Y.; Li, J.; Liu, H. Z.; Ji, Y. J.; Zhong, Z. Y.; Su, F. B. Promoting effect of In2O3 on CuO for the Rochow reaction: The formation of p-n junctions at the hetero-interfaces. J. Catal. 2017, 348, 110-124.

23

Zhang, Z. L.; Che, H. W.; Gao, J. J.; Wang, Y. L.; She, X. L.; Sun, J.; Gunawan, P.; Zhong, Z. Y.; Su, F. B. Shape- controlled synthesis of Cu2O microparticles and their catalytic performances in the Rochow reaction. Catal. Sci. Technol. 2012, 2, 1207-1212.

24

Luo, W. X.; Wang, G. R.; Wang, J. F.; Jin, Y. Modification of CuCl catalyst used in the direct synthesis reaction of methyl chlorosilane monomer. Chem. Eng. 2006, 34, 41-44.

25

Banholzer, W. F.; Lewis, N.; Ward, W. Active site formation in the direct process for methylchlorosilanes. J. Catal. 1986, 101, 405-415.

26

Zhang, Z. L.; Che, H. W.; Wang, Y. L.; She, X. L.; Sun, J.; Gunawan, P.; Zhong, Z. Y.; Su, F. B. Facile solvothermal synthesis of porous cubic Cu microparticles as copper catalysts for Rochow reaction. ACS Appl. Mater. Interfaces 2012, 4, 1295-1302.

27

Li, J.; Zhang, Z. L.; Ji, Y. J.; Jin, Z. Y.; Zou, S. Y.; Zhong, Z. Y.; Su, F. B. One-dimensional Cu-based catalysts with layered Cu-Cu2O-CuO walls for the Rochow reaction. Nano Res. 2016, 9, 1377-1392.

28

Jin, Z. Y.; Li, J.; Shi, L. S.; Ji, Y. J.; Zhong, Z. Y.; Su, F. B. One-pot hydrothermal growth of raspberry-like CeO2 on CuO microsphere as copper-based catalyst for Rochow reaction. Appl. Surf. Sci. 2015, 359, 120-129.

29

Veer, F.; Kolster, B.; Burgers, W. Diffusion of the Cu3Si phase of the copper-silicon system. Trans. Metall. Soc. AIME 1968, 242, 669-673.

30

Voorhoeve, R. J. H.; Lips, J. A.; Vlugter, J. C. Mechanism and kinetics of the metal-catalyzed synthesis of methylchlorosilanes: Ⅰ. The synthesis of methylchlorosilanes in a fluid bed. J. Catal. 1964, 3, 414-425.

31

Wang, C.; Liu, T.; Huang, Y. L.; Wang, G. R.; Wang, J. F. Promoter effects of Zn and Sn in the direct synthesis of methylchlorosilanes. Ind. Eng. Chem. Res. 2013, 52, 5282- 5286.

32

Voorhoeve, R. J. H.; Vlugter, J. C. Mechanism and kinetics of the metal-catalyzed synthesis of methylchlorosilanes: Ⅲ. The catalytically active form of the copper catalyst. J. Catal. 1965, 4, 123-133.

33

Bablin, J. M.; Lewis, L. N.; Bui, P.; Gardner, M. Mechanism of the methylchlorosilane reaction: Improved lab reactor design and kinetic data. Ind. Eng. Chem. Res. 2003, 42, 3532-3543.

34

Burda, C.; Chen, X. B.; Narayanan, R.; El-Sayed, M. A. Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 2005, 105, 1025-1102.

35

Xu, X. X.; Yang, H.; Liu, Y. N. Self-assembled structures of CuO primary crystals synthesized from Cu(CH3COO)2- NaOH aqueous systems. CrystEngComm 2012, 14, 5289- 5298.

36

Ganga, B. G.; Varma, M. R.; Santhosh, P. N. Evidence of reduced antiferromagnetic transition in mesocrystals of CuO synthesized by a surfactant-free solution phase method. CrystEngComm 2015, 17, 7086-7093.

37

Sun, S. D.; Sun, Y. X.; Zhang, X. Z.; Zhang, H. J.; Song, X. P.; Yang, Z. M. A surfactant-free strategy for controllable growth of hierarchical copper oxide nanostructures. CrystEngComm 2013, 15, 5275-5282.

38

Sun, S. D.; Zhang, X. Z.; Zhang, J.; Wang, L. Q.; Song, X. P.; Yang, Z. M. Surfactant-free CuO mesocrystals with controllable dimensions: Green ordered-aggregation-driven synthesis, formation mechanism and their photochemical performances. CrystEngComm 2013, 15, 867-877.

39

Dai, Z. R.; Pan, Z. W.; Wang, Z. L. Novel nanostructures of functional oxides synthesized by thermal evaporation. Adv. Funct. Mater. 2003, 13, 9-24.

40

Chen, Z. P.; Wang, S.; Liu, W. G.; Gao, X. H.; Gao, D. N.; Wang, M. Z.; Wang, S. D. Morphology-dependent perfor; mance of Co3O4 via facile and controllable synthesis for methane combustion. Appl. Catal. A 2016, 525, 94-102.

41

Yang, Y.; Zhang, S. Z.; Wang, S. W.; Zhang, K. L.; Wang, H. Z.; Huang, J.; Deng, S. B.; Wang, B.; Wang, Y. J.; Yu, G. Ball milling synthesized MnOx as highly active catalyst for gaseous POPs removal: Significance of mechanochemically induced oxygen vacancies. Environ. Sci. Technol. 2015, 49, 4473-4480.

42

Sun, S. M.; Yang, L.; Pang, G. S.; Feng, S. H. Surface properties of Mg doped LaCoO3 particles with large surface areas and their enhanced catalytic activity for CO oxidation. Appl. Catal. A 2011, 401, 199-203.

43

Dolle, P.; Tommasini, M.; Jupille, J. The adsorption of oxygen on a cesiated Ni(111) surface: Evidence for the formation of molecularly chemisorbed oxygen species. Surf. Sci. 1989, 211-212, 904-911.

44

Lischka, M.; Mosch, C.; Groß, A. Tuning catalytic properties of bimetallic surfaces: Oxygen adsorption on pseudomorphic Pt/Ru overlayers. Electrochim. Acta 2007, 52, 2219-2228.

45

Luo, M. F.; Fang, P.; He, M.; Xie, Y. L. In situ XRD, Raman, and TPR studies of CuO/Al2O3 catalysts for CO oxidation. J. Mol. Catal. A: Chem. 2005, 239, 243-248.

46

Marko, O. W.; Borah, P. S. Method for quenching silicon spent bed. U.S. Patent 5, 000, 934, March 19, 1991.

47

Wessel, T. J.; Rethwisch, D. G. Deactivation of CuSi and CuZnSnSi due to coke formation during the direct synthesis of methylchlorosilanes. J. Catal. 1996, 161, 861-866.

48

Voorhoeve, R. J. H.; Geertsema, B. J. H.; Vlugter, J. C. Mechanism and kinetics of the metal-catalyzed synthesis of methylchlorosilanes: Ⅱ. The kinetics of the copper-catalyzed reaction of methyl chloride and silicon. J. Catal. 1965, 4, 43-55.

49

Zhou, K. B.; Li, Y. D. Catalysis based on nanocrystals with well-defined facets. Angew. Chem., Int. Ed. 2012, 51, 602-613.

Nano Research
Pages 804-819
Cite this article:
Zhang Y, Ji Y, Li J, et al. Morphology-dependent catalytic properties of nanocupric oxides in the Rochow reaction. Nano Research, 2018, 11(2): 804-819. https://doi.org/10.1007/s12274-017-1689-x

716

Views

28

Crossref

N/A

Web of Science

31

Scopus

1

CSCD

Altmetrics

Received: 13 April 2017
Revised: 14 May 2017
Accepted: 17 May 2017
Published: 07 July 2017
© Tsinghua University Press and Springer-Verlag GmbH Germany 2017
Return