AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Practical considerations of Si-based anodes for lithium-ion battery applications

Jaegeon Ryu§Dongki Hong§Hyun-Wook Lee( )Soojin Park( )
Department of Energy EngineeringSchool of Energy and Chemical EngineeringUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea

§ Jaegeon Ryu and Dongki Hong contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Using Si-based anodes in Li-ion batteries is one of the most feasible approaches to achieve high energy densities despite their disadvantages, such as low conductivity and massive volume expansion, which cause unstable solid electrolyte interphase layers with mechanical failure. The forefront in research and development to address the above challenges suggests the possibility of fully commercially viable cells using various structural and interfacial modifications. In particular, we present a discussion of each dimension of Si-based anodes in multiple controlled systems, including plain, hollow, porous, and uniquely engineered structures, which are further evaluated based on their anode performances, such as initial reversibility, capacity retention for extended cycles with its efficiency, degree of volume expansion tolerance, and rate capabilities, by several practical standards in half cells. With these practical considerations, multi-dimensional structures with uniform size distributions (micrometers, on average) are strongly desired to satisfy the rigorous requirements for widespread applications. Furthermore, we closely examined several full cells composed of Si-based multicomponent anodes coupled with suitable cathodes based on practical standards to propose future research directions for Si-based anodes to keep pace with the rapidly changing market demands for diverse energy storage systems.

References

1

Croguennec, L.; Palacin, M. R. Recent achievements on inorganic electrode materials for lithium-ion batteries. J. Am. Chem. Soc. 2015, 137, 3140-3156.

2

Diouf, B.; Pode, R. Potential of lithium-ion batteries in renewable energy. Renew. Energy 2015, 76, 375-380.

3

Dunn, B; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928-935.

4

Erickson, E. M.; Ghanty, C.; Aurbach, D. New horizons for conventional lithium ion battery technology. J. Phys. Chem. Lett. 2014, 5, 3313-3324.

5

Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Challenges in the development of advanced Li-ion batteries: A review. Energy Environ. Sci. 2011, 4, 3243-3262.

6

Goodenough, J. B. Evolution of strategies for modern rechargeable batteries. Acc. Chem. Res. 2013, 46, 1053-1061.

7

Kang, K.; Meng, Y. S.; Bréger, J.; Grey, C. P.; Ceder, G. Electrodes with high power and high capacity for rechargeable lithium batteries. Science 2006, 311, 977-980.

8

Kim, T. H.; Park, J. S.; Chang, S. K.; Choi, S.; Ryu, J. H.; Song, H. K. The current move of lithium ion batteries towards the next phase. Adv. Energy Mater. 2012, 2, 860-872.

9

Magasinski, A.; Dixon, P.; Hertzberg, B.; Kvit, A.; Ayala, J.; Yushin, G. High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nat. Mater. 2010, 9, 461.

10

Thackeray, M. M.; Wolverton, C.; Isaacs, E. D. Electrical energy storage for transportation-approaching the limits of, and going beyond, lithium-ion batteries. Energy Environ. Sci. 2012, 5, 7854-7863.

11

Dey, A. N. Electrochemical alloying of lithium in organic electrolytes. J. Electrochem. Soc. 1971, 118, 1547-1549.

12

Park, C. M.; Kim, J. H.; Kim, H.; Sohn, H. J. Li-alloy based anode materials for Li secondary batteries. Chem. Soc. Rev. 2010, 39, 3115-3141.

13

Qian, J. F.; Henderson, W. A.; Xu, W.; Bhattacharya, P.; Engelhard, M.; Borodin, O.; Zhang, J. G. High rate and stable cycling of lithium metal anode. Nat. Commun. 2015, 6, 6362.

14

Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 2004, 104, 4303-4418.

15

Zhang, K.; Lee, G. H.; Park, M.; Li, W. J.; Kang, Y. M. Recent developments of the lithium metal anode for rechargeable non-aqueous batteries. Adv. Energy Mater. 2016, 6, 1600811.

16

Yoshio, M.; Wang, H. Y.; Fukuda, K.; Umeno, T.; Abe, T.; Ogumi, Z. Improvement of natural graphite as a lithium-ion battery anode material, from raw flake to carbon-coated sphere. J. Mater. Chem. 2004, 14, 1754-1758.

17

Xiang, H. F.; Li, Z. D.; Xie, K.; Jiang, J. Z.; Chen, J. J.; Lian, P. C.; Wu, J. S.; Yu, Y.; Wang, H. H. Graphene sheets as anode materials for Li-ion batteries: Preparation, structure, electrochemical properties and mechanism for lithium storage. RSC Adv. 2012, 2, 6792-6799.

18

Buiel, E.; Dahn, J. R. Li-insertion in hard carbon anode materials for Li-ion batteries. Electrochim. Acta 1999, 45, 121-130.

19

Huggins, R. A. Lithium alloy negative electrodes. J. Power Sources 1999, 81-82, 13-19.

20

Obrovac, M. N.; Krause, L. J. Reversible cycling of crystalline silicon powder. J. Electrochem. Soc. 2007, 154, A103-A108.

21

Lee, J. K.; Oh, C.; Kim, N.; Hwang, J. Y.; Sun, Y. K. Rational design of silicon-based composites for high-energy storage devices. J. Mater. Chem. A 2016, 4, 5366-5384.

22

Wang, J. J.; Xu, T. T.; Huang, X.; Li, H.; Ma, T. L. Recent progress of silicon composites as anode materials for secondary batteries. RSC Adv. 2016, 6, 87778-87790.

23

Rahman, M. A.; Song, G. S.; Bhatt, A. I.; Wong, Y. C.; Wen, C. E. Nanostructured silicon anodes for high-performance lithium-ion batteries. Adv. Funct. Mater. 2016, 26, 647-678.

24

Li, J.; Dahn, J. R. An in situ X-ray diffraction study of the reaction of Li with crystalline Si. J. Electrochem. Soc. 2007, 154, A156-A161.

25

Besenhard, J. O.; Yang, J.; Winter, M. Will advanced lithium-alloy anodes have a chance in lithium-ion batteries. J. Power Sources 1997, 68, 87-90.

26

Reece, S. Y.; Hamel, J. A.; Sung, K.; Jarvi, T. D.; Esswein, A. J.; Pijpers, J. J. H.; Nocera, D. G. Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts. Science 2011, 334, 645-648.

27

Leblanc, D.; Hovington, P.; Kim, C.; Guerfi, A.; Bélanger, D.; Zaghib, K. Silicon as anode for high-energy lithium ion batteries: From molten ingot to nanoparticles. J. Power Sources 2015, 299, 529-536.

28

Nishi, Y. Lithium ion secondary batteries; past 10 years and the future. J. Power Sources 2001, 100, 101-106.

29

Hirose, T.; Morishita, M.; Yoshitake, H.; Sakai, T. Study of structural changes that occurred during charge/discharge of carbon-coated SiO anode by nuclear magnetic resonance. Solid State Ionics 2017, 303, 154-160.

30

Yamano, A.; Morishita, M.; Yanagida, M.; Sakai, T. High-capacity Li-ion batteries using SiO-Si composite anode and Li-rich layered oxide cathode: Cell design and its safety evaluation. J. Electrochem. Soc. 2015, 162, A1730-A1737.

31

Zhao, X.; Li, M. J.; Chang, K. H.; Lin, Y. M. Composites of graphene and encapsulated silicon for practically viable high-performance lithium-ion batteries. Nano Res. 2014, 7, 1429-1438.

32

Lee, J. H.; Yoon, C. S.; Hwang, J. Y.; Kim, S. J.; Maglia, F.; Lamp, P.; Myung, S. T.; Sun, Y. K. High-energy-density lithium-ion battery using a carbon-nanotube-Si composite anode and a compositionally graded Li[Ni0.85Co0.05Mn0.10] O2 cathode. Energy Environ. Sci. 2016, 9, 2152-2158.

33

Son, I. H.; Park, J. H.; Kwon, S.; Park, S.; Rümmeli, M. H.; Bachmatiuk, A.; Song, H. J.; Ku, J.; Choi, J. W.; Choi, J. M. et al. Silicon carbide-free graphene growth on silicon for lithium-ion battery with high volumetric energy density. Nat. Commun. 2015, 6, 7393.

34

Huang, Y. L.; Hou, X. H.; Fan, X. Y.; Ma, S. M.; Hu, S. J.; Lam, K. H. Advanced Li-rich cathode collaborated with graphite/silicon anode for high performance Li-ion batteries in half and full cells. Electrochim. Acta 2015, 182, 1175-1187.

35

Zu, C. X.; Li, H. Thermodynamic analysis on energy densities of batteries. Energy Environ. Sci. 2011, 4, 2614-2624.

36

Yoo, H.; Lee, J. I.; Kim, H.; Lee, J. P.; Cho, J.; Park, S. Helical silicon/silicon oxide core-shell anodes grown onto the surface of bulk silicon. Nano Lett. 2011, 11, 4324-4328.

37

Lee, J. I.; Lee, K. T.; Cho, J.; Kim, J.; Choi, N. S.; Park, S. Chemical-assisted thermal disproportionation of porous silicon monoxide into silicon-based multicomponent systems. Angew. Chem., Int. Ed. 2012, 51, 2767-2771.

38

Wu, H.; Chan, G.; Choi, J. W.; Ryu, I.; Yao, Y.; McDowell, M. T.; Lee, S. W.; Jackson, A.; Yang, Y.; Hu, L. B. et al. Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat. Nanotechnol. 2012, 7, 310-315.

39

Chan, C. K.; Peng, H. L.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008, 3, 31-35.

40

Hertzberg, B.; Alexeev, A.; Yushin, G. Deformations in Si-Li anodes upon electrochemical alloying in nano-confined space. J. Am. Chem. Soc. 2010, 132, 8548-8549.

41

Magasinski, A.; Dixon, P.; Hertzberg, B.; Kvit, A.; Ayala, J.; Yushin, G. High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nat. Mater. 2010, 9, 353-358.

42

Ge, M. Y.; Lu, Y. H.; Ercius, P.; Rong, J. P.; Fang, X.; Mecklenburg, M.; Zhou, C. W. Large-scale fabrication, 3D tomography, and lithium-ion battery application of porous silicon. Nano Lett. 2014, 14, 261-268.

43

Wu, H.; Yu, G. H.; Pan, L. J.; Liu, N. A.; McDowell, M. T.; Bao, Z. A.; Cui, Y. Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nat. Commun. 2013, 4, 1943.

44

Jeong, Y. K.; Kwon, T. W.; Lee, I.; Kim, T. S.; Coskun, A.; Choi, J. W. Hyperbranched β-cyclodextrin polymer as an effective multidimensional binder for silicon anodes in lithium rechargeable batteries. Nano Lett. 2014, 14, 864-870.

45

Kwon, T. W.; Jeong, Y. K.; Deniz, E.; AlQaradawi, S. Y.; Choi, J. W.; Coskun, A. Dynamic cross-linking of polymeric binders based on host-guest interactions for silicon anodes in lithium ion batteries. ACS Nano 2015, 9, 11317-11324.

46

Liu, N.; Wu, H.; McDowell, M. T.; Yao, Y.; Wang, C. M.; Cui, Y. A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes. Nano Lett. 2012, 12, 3315-3321.

47

Li, Y. Z.; Yan, K.; Lee, H. W.; Lu, Z. D.; Liu, N.; Cui, Y. Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes. Nat. Energy 2016, 1, 15029.

48

Yao, Y.; McDowell, M. T.; Ryu, I.; Wu, H.; Liu, N. A.; Hu, L. B.; Nix, W. D.; Cui, Y. Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano Lett. 2011, 11, 2949-2954.

49

Liu, N. A.; Lu, Z. D.; Zhao, J.; McDowell, M. T.; Lee, H. W.; Zhao, W. T.; Cui, Y. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat. Nanotechnol. 2014, 9, 187-192.

50

Lu, Z. D.; Liu, N.; Lee, H. W.; Zhao, J.; Li, W. Y.; Li, Y. Z.; Cui, Y. Nonfilling carbon coating of porous silicon micrometer-sized particles for high-performance lithium battery anodes. ACS Nano 2015, 9, 2540-2547.

51

Huggins, R. A.; Nix, W. D. Decrepitation model for capacity loss during cycling of alloys in rechargeable electrochemical systems. Ionics 2000, 6, 57-63.

52

Ryu, I.; Lee, S. W.; Gao, H. J.; Cui, Y.; Nix, W. D. Microscopic model for fracture of crystalline Si nanopillars during lithiation. J. Power Sources 2014, 255, 274-282.

53

Zhao, K. J.; Pharr, M.; Wan, Q.; Wang, W. L.; Kaxiras, E.; Vlassak, J. J.; Suo, Z. G. Concurrent reaction and plasticity during initial lithiation of crystalline silicon in lithium-ion batteries. J. Electrochem. Soc. 2012, 159, A238-A243.

54

Pharr, M.; Zhao, K. J.; Wang, X. W.; Suo, Z. G.; Vlassak, J. J. Kinetics of initial lithiation of crystalline silicon electrodes of lithium-ion batteries. Nano Lett. 2012, 12, 5039-5047.

55

Zhang, X. X.; Lee, S. W.; Lee, H. -W.; Cui, Y.; Linder, C. A reaction-controlled diffusion model for the lithiation of silicon in lithium-ion batteries. Extrem. Mech. Lett. 2015, 4, 61-75.

56

Williamson, M. J.; Tromp, R. M.; Vereecken, P. M.; Hull, R.; Ross, F. M. Dynamic microscopy of nanoscale cluster growth at the solid-liquid interface. Nat. Mater. 2003, 2, 532-536.

57

Huang, J. Y.; Zhong, L.; Wang, C. M.; Sullivan, J. P.; Xu, W.; Zhang, L. Q.; Mao, S. X.; Hudak, N. S.; Liu, X. H.; Subramanian, A. et al. In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 2010, 330, 1515-1520.

58

Gu, M.; Parent, L. R.; Mehdi, B. L.; Unocic, R. R.; McDowell, M. T.; Sacci, R. L.; Xu, W.; Connell, J. G.; Xu, P. H.; Abellan, P. et al. Demonstration of an electrochemical liquid cell for operando transmission electron microscopy observation of the lithiation/delithiation behavior of Si nanowire battery anodes. Nano Lett. 2013, 13, 6106-6112.

59

Lee, H. W.; Li, Y. Z.; Cui, Y. Perspectives in in situ transmission electron microscopy studies on lithium battery electrodes. Curr. Opin. Chem. Eng. 2016, 12, 37-43.

60

Lee, S. W.; McDowell, M. T.; Choi, J. W.; Cui, Y. Anomalous shape changes of silicon nanopillars by electrochemical lithiation. Nano Lett. 2011, 11, 3034-3039.

61

Goldman, J. L.; Long, B. R.; Gewirth, A. A.; Nuzzo, R. G. Strain anisotropies and self-limiting capacities in single-crystalline 3D silicon microstructures: Models for high energy density lithium-ion battery anodes. Adv. Funct. Mater. 2011, 21, 2412-2422.

62

Lee, S. W.; McDowell, M. T.; Berla, L. A.; Nix, W. D.; Cui, Y. Fracture of crystalline silicon nanopillars during electrochemical lithium insertion. Proc. Natl. Acad. Sci. U.S.A. 2012, 109, 4080-4085.

63

Chan, M. K. Y.; Long, B. R.; Gewirth, A. A.; Greeley, J. P. The first-cycle electrochemical lithiation of crystalline Ge: Dopant and orientation dependence and comparison with Si. J. Phys. Chem. Lett. 2011, 2, 3092-3095.

64

Yang, H.; Fan, F. F.; Liang, W. T.; Guo, X.; Zhu, T.; Zhang, S. L. A chemo-mechanical model of lithiation in silicon. J. Mech. Phys. Solids 2014, 70, 349-361.

65

Ryu, I.; Choi, J. W.; Cui, Y.; Nix, W. D. Size-dependent fracture of Si nanowire battery anodes. J. Mech. Phys. Solids 2011, 59, 1717-1730.

66

Cui, L. F.; Yang, Y.; Hsu, C. M.; Cui, Y. Carbon-silicon core-shell nanowires as high capacity electrode for lithium ion batteries. Nano Lett. 2009, 9, 3370-3374.

67

Berla, L. A.; Lee, S. W.; Ryu, I.; Cui, Y.; Nix, W. D. Robustness of amorphous silicon during the initial lithiation/delithiation cycle. J. Power Sources 2014, 258, 253-259.

68

Lee, S. W.; Lee, H. W.; Ryu, I.; Nix, W. D.; Gao, H. J.; Cui, Y. Kinetics and fracture resistance of lithiated silicon nanostructure pairs controlled by their mechanical interaction. Nat. Commun. 2015, 6, 7533.

69

Jeong, Y. K.; Kwon, T. W.; Lee, I.; Kim, T. S.; Coskun, A.; Choi, J. W. Millipede-inspired structural design principle for high performance polysaccharide binders in silicon anodes. Energy Environ. Sci. 2015, 8, 1224-1230.

70

Koo, B.; Kim, H.; Cho, Y.; Lee, K. T.; Choi, N. S.; Cho, J. A highly cross-linked polymeric binder for high-performance silicon negative electrodes in lithium ion batteries. Angew. Chem., Int. Ed. 2012, 51, 8762-8767.

71

Kwon, T. W.; Jeong, Y. K.; Lee, I.; Kim, T. S.; Choi, J. W.; Coskun, A. Systematic molecular-level design of binders incorporating Meldrum's acid for silicon anodes in lithium rechargeable batteries. Adv. Mater. 2014, 26, 7979-7985.

72

Liu, G.; Xun, S. D.; Vukmirovic, N.; Song, X. Y.; Olalde-Velasco, P.; Zheng, H. H.; Battaglia, V. S.; Wang, L. W.; Yang, W. L. Polymers with tailored electronic structure for high capacity lithium battery electrodes. Adv. Mater. 2011, 23, 4679-4683.

73

Park, S. J.; Zhao, H.; Ai, G.; Wang, C.; Song, X. Y.; Yuca, N.; Battaglia, V. S.; Yang, W. L.; Liu, G. Side-chain conducting and phase-separated polymeric binders for high-performance silicon anodes in lithium-ion batteries. J. Am. Chem. Soc. 2015, 137, 2565-2571.

74

Wang, C.; Wu, H.; Chen, Z.; McDowell, M. T.; Cui, Y.; Bao, Z. A. Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. Nat. Chem. 2013, 5, 1042-1048.

75

Shenoy, V. B.; Johari, P.; Qi, Y. Elastic softening of amorphous and crystalline Li-Si phases with increasing Li concentration: A first-principles study. J. Power Sources 2010, 195, 6825-6830.

76

Sethuraman, V. A.; Chon, M. J.; Shimshak, M.; Srinivasan, V.; Guduru, P. R. In situ measurements of stress evolution in silicon thin films during electrochemical lithiation and delithiation. J. Power Sources 2010, 195, 5062-5066.

77

Zhao, K. J.; Wang, W. L.; Gregoire, J.; Pharr, M.; Suo, Z. G.; Vlassak, J. J.; Kaxiras, E. Lithium-assisted plastic deformation of silicon electrodes in lithium-ion batteries: A first-principles theoretical study. Nano Lett. 2011, 11, 2962-2967.

78

Pharr, M.; Suo, Z. G.; Vlassak, J. J. Measurements of the fracture energy of lithiated silicon electrodes of Li-ion batteries. Nano Lett. 2013, 13, 5570-5577.

79

Hatchard, T. D.; Dahn, J. R. In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon. J. Electrochem. Soc. 2004, 151, A838-A842.

80

Zeng, Z. D.; Liu, N. A.; Zeng, Q. S.; Lee, S. W.; Mao, W. L.; Cui, Y. In situ measurement of lithiation-induced stress in silicon nanoparticles using micro-Raman spectroscopy. Nano Energy 2016, 22, 105-110.

81

Key, B.; Bhattacharyya, R.; Morcrette, M.; Seznéc, V.; Tarascon, J. M.; Grey, C. P. Real-time NMR investigations of structural changes in silicon electrodes for lithium-ion batteries. J. Am. Chem. Soc. 2009, 131, 9239-9249.

82

Liu, X. H.; Zheng, H.; Zhong, L.; Huan, S.; Karki, K.; Zhang, L. Q.; Liu, Y.; Kushima, A.; Liang, W. T.; Wang, J. W. et al. Anisotropic swelling and fracture of silicon nanowires during lithiation. Nano Lett. 2011, 11, 3312-3318.

83

McDowell, M. T.; Lee, S. W.; Wang, C. M.; Cui, Y. The effect of metallic coatings and crystallinity on the volume expansion of silicon during electrochemical lithiation/delithiation. Nano Energy 2012, 1, 401-410.

84

Liu, X. H.; Zhang, L. Q.; Zhong, L.; Liu, Y.; Zheng, H.; Wang, J. W.; Cho, J. H.; Dayeh, S. A.; Picraux, S. T.; Sullivan, J. P. et al. Ultrafast electrochemical lithiation of individual Si nanowire anodes. Nano Lett. 2011, 11, 2251-2258.

85

Liu, X. H.; Wang, J. W.; Huang, S.; Fan, F. F.; Huang, X.; Liu, Y.; Krylyuk, S.; Yoo, J.; Dayeh, S. A.; Davydov, A. V. et al. In situ atomic-scale imaging of electrochemical lithiation in silicon. Nat. Nanotechnol. 2012, 7, 749-756.

86

McDowell, M. T.; Ryu, I.; Lee, S. W.; Wang, C. M.; Nix, W. D.; Cui, Y. Studying the kinetics of crystalline silicon nanoparticle lithiation with in situ transmission electron microscopy. Adv. Mater. 2012, 24, 6034-6041.

87

McDowell, M. T.; Lee, S. W.; Harris, J. T.; Korgel, B. A.; Wang, C. M.; Nix, W. D.; Cui, Y. In situ TEM of two-phase lithiation of amorphous silicon nanospheres. Nano Lett. 2013, 13, 758-764.

88

Holtz, M. E.; Yu, Y. C.; Gao, J.; Abruña, H. D.; Muller, D. A. In situ electron energy-loss spectroscopy in liquids. Microsc. Microanal. 2013, 19, 1027-1035.

89

Tiwari, J. N.; Tiwari, R. N.; Kim, K. S. Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Prog. Mater. Sci. 2012, 57, 724-803.

90

Balogun, M. S.; Qiu, W. T.; Luo, Y.; Meng, H.; Mai, W. J.; Onasanya, A.; Olaniyi, T. K.; Tong, Y. X. A review of the development of full cell lithium-ion batteries: The impact of nanostructured anode materials. Nano Res. 2016, 9, 2823-2851.

91

Higgins, T. M.; Park, S. H.; King, P. J.; Zhang, C. F.; McEvoy, N.; Berner, N. C.; Daly, D.; Shmeliov, A.; Khan, U.; Duesberg, G. et al. A commercial conducting polymer as both binder and conductive additive for silicon nanoparticle-based lithium-ion battery negative electrodes. ACS Nano 2016, 10, 3702-3713.

92

Kim, H.; Seo, M.; Park, M. H.; Cho, J. A critical size of silicon nano-anodes for lithium rechargeable batteries. Angew. Chem., Int. Ed. 2010, 49, 2146-2149.

93

Yang, L. Y.; Li, H. Z.; Liu, J.; Sun, Z. Q.; Tang, S. S.; Lei, M. Dual yolk-shell structure of carbon and silica-coated silicon for high-performance lithium-ion batteries. Sci. Rep. 2015, 5, 10908.

94

Yoo, S.; Lee, J. I.; Ko, S.; Park, S. Highly dispersive and electrically conductive silver-coated Si anodes synthesized via a simple chemical reduction process. Nano Energy 2013, 2, 1271-1278.

95

Park, O.; Lee, J. I.; Chun, M. J.; Yeon, J. T.; Yoo, S.; Choi, S.; Choi, N. S.; Park, S. High-performance Si anodes with a highly conductive and thermally stable titanium silicide coating layer. RSC Adv. 2013, 3, 2538-2542.

96

Song, J. X.; Zhou, M. J.; Yi, R.; Xu, T.; Gordin, M. L.; Tang, D. H.; Yu, Z. X.; Regula, M.; Wang, D. H. Interpenetrated gel polymer binder for high-performance silicon anodes in lithium-ion batteries. Adv. Funct. Mater. 2014, 24, 5904-5910.

97

Hwa, Y.; Kim, W. S.; Yu, B. C.; Hong, S. H.; Sohn, H. J. Mesoporous nano-Si anode for Li-ion batteries produced by magnesio-mechanochemical reduction of amorphous SiO2. Energy Technol. 2013, 1, 327-331.

98

Ryou, M. H.; Kim, J.; Lee, I.; Kim, S.; Jeong, Y. K.; Hong, S.; Ryu, J. H.; Kim, T. S.; Park, J. K.; Lee, H. et al. Mussel-inspired adhesive binders for high-performance silicon nanoparticle anodes in lithium-ion batteries. Adv. Mater. 2013, 25, 1571-1576.

99

Kambara, M.; Kitayama, A.; Homma, K.; Hideshima, T.; Kaga, M.; Sheem, K. Y.; Ishida, S.; Yoshida, T. Nano-composite Si particle formation by plasma spraying for negative electrode of Li ion batteries. J. Appl. Phys. 2014, 115, 143302.

100

Shao, D.; Tang, D. P.; Mai, Y. J.; Zhang, L. Z. Nanostructured silicon/porous carbon spherical composite as a high capacity anode for Li-ion batteries. J. Mater. Chem. A 2013, 1, 15068-15075.

101

Park, H.; Choi, S.; Lee, S.; Hwang, G.; Choi, N. S.; Park, S. Novel design of silicon-based lithium-ion battery anode for highly stable cycling at elevated temperature. J. Mater. Chem. A 2015, 3, 1325-1332.

102

Chen, D. Y.; Mei, X.; Ji, G.; Lu, M. H.; Xie, J. P.; Lu, J. M.; Lee, J. Y. Reversible lithium-ion storage in silver-treated nanoscale hollow porous silicon particles. Angew. Chem., Int. Ed. 2012, 51, 2409-2413.

103

Choi, S.; Jung, D. S.; Choi, J. W. Scalable fracture-free SiOC glass coating for robust silicon nanoparticle anodes in lithium secondary batteries. Nano Lett. 2014, 14, 7120-7125.

104

Ge, M. Y.; Rong, J. P.; Fang, X.; Zhang, A. Y.; Lu, Y. H.; Zhou, C. W. Scalable preparation of porous silicon nanoparticles and their application for lithium-ion battery anodes. Nano Res. 2013, 6, 174-181.

105

Wang, B.; Li, X. L.; Zhang, X. F.; Luo, B.; Jin, M. H.; Liang, M. H.; Dayeh, S. A.; Picraux, S. T.; Zhi, L. J. Adaptable silicon-carbon nanocables sandwiched between reduced graphene oxide sheets as lithium ion battery anodes. ACS Nano 2013, 7, 1437-1445.

106

Lim, K. W.; Lee, J. I.; Yang, J.; Kim, Y. K.; Jeong, H. Y.; Park, S.; Shin, H. S. Catalyst-free synthesis of Si-SiOx core-shell nanowire anodes for high-rate and High-capacity lithium-ion batteries. ACS Appl. Mater. Interfaces 2014, 6, 6340-6345.

107

Cao, F. F.; Deng, J. W.; Xin, S.; Ji, H. X.; Schmidt, O. G.; Wan, L. J.; Guo, Y. G. Cu-Si nanocable arrays as high-rate anode materials for lithium-ion batteries. Adv. Mater. 2011, 23, 4415-4420.

108

Cho, J. H.; Picraux, S. T. Enhanced lithium ion battery cycling of silicon nanowire anodes by template growth to eliminate silicon underlayer islands. Nano Lett. 2013, 13, 5740-5747.

109

Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56-58.

110

Yao, Y.; Liu, N. A.; McDowell, M. T.; Pasta, M.; Cui, Y. Improving the cycling stability of silicon nanowire anodes with conducting polymer coatings. Energy Environ. Sci. 2012, 5, 7927-7930.

111

Yoo, S.; Lee, J. I.; Shin, M.; Park, S. Large-scale synthesis of interconnected Si/SiOx nanowire anodes for rechargeable lithium-ion batteries. ChemSusChem 2013, 6, 1153-1157.

112

Kohandehghan, A.; Kalisvaart, P.; Kupsta, M.; Zahiri, B.; Amirkhiz, B. S.; Li, Z. P.; Memarzadeh, E. L.; Bendersky, L. A.; Mitlin, D. Magnesium and magnesium-silicide coated silicon nanowire composite anodes for lithium-ion batteries. J. Mater. Chem. A 2013, 1, 1600-1612.

113

Ryu, J.; Choi, S.; Bok, T.; Park, S. Nanotubular structured Si-based multicomponent anodes for high-performance lithium-ion batteries with controllable pore size via coaxial electro-spinning. Nanoscale 2015, 7, 6126-6135.

114

Ge, M. Y.; Rong, J. P.; Fang, X.; Zhou, C. W. Porous doped silicon nanowires for lithium ion battery anode with long cycle life. Nano Lett. 2012, 12, 2318-2323.

115

Chen, Y.; Liu, L. F.; Xiong, J.; Yang, T. Z.; Qin, Y.; Yan, C. L. Porous Si nanowires from cheap metallurgical silicon stabilized by a surface oxide layer for lithium ion batteries. Adv. Funct. Mater. 2015, 25, 6701-6709.

116

Yoo, J. K.; Kim, J.; Jung, Y. S.; Kang, K. Scalable fabrication of silicon nanotubes and their application to energy storage. Adv. Mater. 2012, 24, 5452-5456.

117

Park, M. H.; Kim, M. G.; Joo, J.; Kim, K.; Kim, J.; Ahn, S.; Cui, Y.; Cho, J. Silicon nanotube battery anodes. Nano Lett. 2009, 9, 3844-3847.

118

Chockla, A. M.; Harris, J. T.; Akhavan, V. A.; Bogart, T. D.; Holmberg, V. C.; Steinhagen, C.; Mullins, C. B.; Stevenson, K. J.; Korgel, B. A. Silicon nanowire fabric as a lithium ion battery electrode material. J. Am. Chem. Soc. 2011, 133, 20914-20921.

119

Ren, J. G.; Wang, C. D.; Wu, Q. H.; Liu, X.; Yang, Y.; He, L. F.; Zhang, W. J. A silicon nanowire-reduced graphene oxide composite as a high-performance lithium ion battery anode material. Nanoscale 2014, 6, 3353-3360.

120

Peng, K. Q.; Jie, J. S.; Zhang, W. J.; Lee, S. T. Silicon nanowires for rechargeable lithium-ion battery anodes. Appl. Phys. Lett. 2008, 93, 033105.

121

Hu, L. B.; Wu, H.; Gao, Y. F.; Cao, A. Y.; Li, H. B.; McDough, J.; Xie, X.; Zhou, M.; Cui, Y. Silicon-carbon nanotube coaxial sponge as Li-ion anodes with high areal capacity. Adv. Energy Mater. 2011, 1, 523-527.

122

Chan, C. K.; Patel, R. N.; O'Connell, M. J.; Korgel, B. A.; Cui, Y. Solution-grown silicon nanowires for lithium-ion battery anodes. ACS Nano 2010, 4, 1443-1450.

123

Kim, H.; Cho, J. Superior lithium electroactive mesoporous Si@Carbon core-shell nanowires for lithium battery anode material. Nano Lett. 2008, 8, 3688-3691.

124

Choi, S.; Lee, J. C.; Park, O.; Chun, M. J.; Choi, N. S.; Park, S. Synthesis of micro-assembled Si/titanium silicide nanotube anodes for high-performance lithium-ion batteries. J. Mater. Chem. A 2013, 1, 10617-10621.

125

McSweeney, W.; Geaney, H.; O'Dwyer, C. Metal-assisted chemical etching of silicon and the behavior of nanoscale silicon materials as Li-ion battery anodes. Nano Res. 2015, 8, 1395-1442.

126

Chen, Z. H.; Dahn, J. R. Reducing carbon in LiFePO4/C composite electrodes to maximize specific energy, volumetric energy, and tap density. J. Electrochem. Soc. 2002, 149, A1184-A1189.

127

Maranchi, J. P.; Hepp, A. F.; Kumta, P. N. High capacity, reversible silicon thin-film anodes for lithium-ion batteries. Electrochem. Solid State Lett. 2003, 6, A198-A201.

128

Yu, C. J.; Li, X.; Ma, T.; Rong, J. P.; Zhang, R. J.; Shaffer, J.; An, Y. H.; Liu, Q.; Wei, B. Q.; Jiang, H. Q. Silicon thin films as anodes for high-performance lithium-ion batteries with effective stress relaxation. Adv. Energy Mater. 2012, 2, 68-73.

129

Abel, P. R.; Lin, Y. M.; Celio, H.; Heller, A.; Mullins, C. B. Improving the stability of nanostructured silicon thin film lithium-ion battery anodes through their controlled oxidation. ACS Nano 2012, 6, 2506-2516.

130

Ryu, J.; Hong, D.; Choi, S.; Park, S. Synthesis of ultrathin Si nanosheets from natural clays for lithium-ion battery anodes. ACS Nano 2016, 10, 2843-2851.

131

Ryu, J.; Hong, D.; Shin, M.; Park, S. Multiscale hyperporous silicon flake anodes for high initial Coulombic efficiency and cycle stability. ACS Nano 2016, 10, 10589-10597.

132

Kim, W. S.; Hwa, Y.; Shin, J. H.; Yang, M.; Sohn, H. J.; Hong, S. H. Scalable synthesis of silicon nanosheets from sand as an anode for Li-ion batteries. Nanoscale 2014, 6, 4297-4302.

133

Wang, X. H.; Sun, L. M.; Hu, X. N.; Susantyoko, R. A.; Zhang, Q. Ni-Si nanosheet network as high performance anode for Li ion batteries. J. Power Sources 2015, 280, 393-396.

134

Xu, K. Q.; Ben, L. B.; Li, H.; Huang, X. J. Silicon-based nanosheets synthesized by a topochemical reaction for use as anodes for lithium ion batteries. Nano Res. 2015, 8, 2654-2662.

135

Yu, X. H.; Xue, F. H.; Huang, H.; Liu, C. J.; Yu, J. Y.; Sun, Y. J.; Dong, X. L.; Cao, G. Z.; Jung, Y. . Synthesis and electrochemical properties of silicon nanosheets by DC arc discharge for lithium-ion batteries. Nanoscale 2014, 6, 6860-6865.

136

Lu, Z. Y.; Zhu, J. X.; Sim, D.; Zhou, W. W.; Shi, W. H.; Hng, H. H.; Yan, Q. Y. Synthesis of ultrathin silicon nanosheets by using graphene oxide as template. Chem. Mater. 2011, 23, 5293-5295.

137

Wan, J. Y.; Kaplan, A. F.; Zheng, J.; Han, X. G.; Chen, Y. C.; Weadock, N. J.; Faenza, N.; Lacey, S.; Li, T.; Guo, J. et al. Two dimensional silicon nanowalls for lithium ion batteries. J. Mater. Chem. A 2014, 2, 6051-6057.

138

Yi, R.; Dai, F.; Gordin, M. L.; Chen, S. R.; Wang, D. H. Micro-sized Si-C composite with interconnected nanoscale building blocks as high-performance anodes for practical application in lithium-ion batteries. Adv. Energy Mater. 2013, 3, 295-300.

139

Bang, B. M.; Lee, J. I.; Kim, H.; Cho, J.; Park, S. High-performance macroporous bulk silicon anodes synthesized by template-free chemical etching. Adv. Energy Mater. 2012, 2, 878-883.

140

Huang, X. K.; Yang, J.; Mao, S.; Chang, J. B.; Hallac, P. B.; Fell, C. R.; Metz, B.; Jiang, J. W.; Hurley, P. T.; Chen, J. H. Controllable synthesis of hollow Si anode for long-cycle-life lithium-ion batteries. Adv. Mater. 2014, 26, 4326-4332.

141

Lee, J. I.; Kang, H.; Park, K. H.; Shin, M.; Hong, D.; Cho, H. J.; Kang, N. R.; Lee, J.; Lee, S. M.; Kim, J. Y. et al. Amphiphilic graft copolymers as a versatile binder for various electrodes of high-performance lithium-ion batteries. Small 2016, 12, 3119-3127.

142

Park, H.; Lee, S.; Yoo, S.; Shin, M.; Kim, J.; Chun, M.; Choi, N. S.; Park, S. Control of interfacial layers for high-performance porous Si lithium-ion battery anode. ACS Appl. Mater. Interfaces 2014, 6, 16360-16367.

143

Luo, J. Y.; Zhao, X.; Wu, J. S.; Jang, H. D.; Kung, H. H.; Huang, J. X. Crumpled graphene-encapsulated Si nanoparticles for lithium ion battery anodes. J. Phys. Chem. Lett. 2012, 3, 1824-1829.

144

Park, H.; Choi, S.; Lee, S. J.; Cho, Y. G.; Hwang, G.; Song, H. K.; Choi, N. S.; Park, S. Design of an ultra-durable silicon-based battery anode material with exceptional high-temperature cycling stability. Nano Energy 2016, 26, 192-199.

145

Liu, W. R.; Guo, Z. Z.; Young, W. S.; Shieh, D. T.; Wu, H. C.; Yang, M. H.; Wu, N. L. Effect of electrode structure on performance of Si anode in Li-ion batteries: Si particle size and conductive additive. J. Power Sources 2005, 140, 139-144.

146

Bok, T.; Choi, S.; Lee, J.; Park, S. Effective strategies for improving the electrochemical properties of highly porous Si foam anodes in lithium-ion batteries. J. Mater. Chem. A 2014, 2, 14195-14200.

147

Ryu, J. H.; Kim, J. W.; Sung, Y. E.; Oh, S. M. Failure modes of silicon powder negative electrode in lithium secondary batteries. Electrochem. Solid State Lett. 2004, 7, A306-A309.

148

Lin, D. C.; Lu, Z. D.; Hsu, P. C.; Lee, H. R.; Liu, N. A.; Zhao, J.; Wang, H. T.; Liu, C.; Cui, Y. A high tap density secondary silicon particle anode fabricated by scalable mechanical pressing for lithium-ion batteries. Energy Environ. Sci. 2015, 8, 2371-2376.

149

Zhang, R. Y.; Du, Y. J.; Li, D.; Shen, D. K.; Yang, J. P.; Guo, Z. P.; Liu, H. K.; Elzatahry, A. A.; Zhao, D. Y. Highly reversible and large lithium storage in mesoporous Si/C nanocomposite anodes with silicon nanoparticles embedded in a carbon framework. Adv. Mater. 2014, 26, 6749-6755.

150

Lee, J. I.; Choi, N. S.; Park, S. Highly stable Si-based multicomponent anodes for practical use in lithium-ion batteries. Energy Environ. Sci. 2012, 5, 7878-7882.

151

Hwang, G.; Park, H.; Bok, T.; Choi, S.; Lee, S.; Hwang, I.; Choi, N. S.; Seo, K.; Park, S. A high-performance nanoporous Si/Al2O3 foam lithium-ion battery anode fabricated by selective chemical etching of the Al-Si alloy and subsequent thermal oxidation. Chem. Commun. 2015, 51, 4429-4432.

152

Li, X. L.; Meduri, P.; Chen, X. L.; Qi, W.; Engelhard, M. H.; Xu, W.; Ding, F.; Xiao, J.; Wang, W.; Wang, C. M. et al. Hollow core-shell structured porous Si-C nanocomposites for Li-ion battery anodes. J. Mater. Chem. 2012, 22, 11014-11017.

153

Tao, H. C.; Fan, L. Z.; Song, W. L.; Wu, M.; He, X. B.; Qu, X. H. Hollow core-shell structured Si/C nanocomposites as high-performance anode materials for lithium-ion batteries. Nanoscale 2014, 6, 3138-3142.

154

Li, X. L.; Gu, M.; Hu, S. Y.; Kennard, R.; Yan, P. F.; Chen, X. L.; Wang, C. M.; Sailor, M. J.; Zhang, J. G.; Liu, J. Mesoporous silicon sponge as an anti-pulverization structure for high-performance lithium-ion battery anodes. Nat. Commun. 2014, 5, 4105.

155

Song, J. X.; Chen, S. R.; Zhou, M. J.; Xu, T.; Lv, D. P.; Gordin, M. L.; Long, T. J.; Melnyk, M.; Wang, D. H. Micro-sized silicon-carbon composites composed of carbon-coated sub-10 nm Si primary particles as high-performance anode materials for lithium-ion batteries. J. Mater. Chem. A 2014, 2, 1257-1262.

156

Kim, C.; Ko, M.; Yoo, S.; Chae, S.; Choi, S.; Lee, E. H.; Ko, S.; Lee, S. Y.; Cho, J.; Park, S. Novel design of ultra-fast Si anodes for Li-ion batteries: Crystalline Si@amorphous Si encapsulating hard carbon. Nanoscale 2014, 6, 10604-10610.

157

Jia, H. P.; Gao, P. F.; Yang, J.; Wang, J. L.; Nuli, Y.; Yang, Z. Novel three-dimensional mesoporous silicon for high power lithium-ion battery anode material. Adv. Energy Mater. 2011, 1, 1036-1039.

158

Yu, Y.; Gu, L.; Zhu, C. B.; Tsukimoto, S.; van Aken, P. A.; Maier, J. Reversible storage of lithium in silver-Coated three-dimensional macroporous Silicon. Adv. Mater. 2010, 22, 2247-2250.

159

Choi, S.; Bok, T.; Ryu, J.; Lee, J. I.; Cho, J.; Park, S. Revisit of metallothermic reduction for macroporous Si: Compromise between capacity and volume expansion for practical Li-ion battery. Nano Energy 2015, 12, 161-168.

160

Liu, N. A.; Huo, K. F.; McDowell, M. T.; Zhao, J.; Cui, Y. Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes. Sci. Rep. 2013, 3, 1919.

161

Bang, B. M.; Kim, H.; Song, H. K.; Cho, J.; Park, S. Scalable approach to multi-dimensional bulk Si anodes via metal-assisted chemical etching. Energy Environ. Sci. 2011, 4, 5013-5019.

162

Du, F. H.; Li, B.; Fu, W.; Xiong, Y. J.; Wang, K. X.; Chen, J. S. Surface binding of polypyrrole on porous silicon hollow nanospheres for Li-ion battery anodes with High structure stability. Adv. Mater. 2014, 26, 6145-6150.

163

Lee, J. I.; Park, J. H.; Lee, S. Y.; Park, S. Surface engineering of sponge-like silicon particles for high-performance lithium-ion battery anodes. Phys. Chem. Chem. Phys. 2013, 15, 7045-7049.

164

Zhang, H. G.; Braun, P. V. Three-dimensional metal scaffold supported bicontinuous silicon battery anodes. Nano Lett. 2012, 12, 2778-2783.

165

Kierzek, K.; Machnikowski, J. Factors influencing cycle-life of full Li-ion cell built from Si/C composite as anode and conventional cathodic material. Electrochim. Acta 2016, 192, 475-481.

166

Lee, J. I.; Ko, Y.; Shin, M.; Song, H. K.; Choi, N. S.; Kim, M. G.; Park, S. High-performance silicon-based multicomponent battery anodes produced via synergistic coupling of multifunctional coating layers. Energy Environ. Sci. 2015, 8, 2075-2084.

167

Ko, M.; Chae, S.; Ma, J. Y.; Kim, N.; Lee, H. W.; Cui, Y.; Cho, J. Scalable synthesis of silicon-nanolayer-embedded graphite for high-energy lithium-ion batteries. Nat. Energy 2016, 1, 16113.

168

Loveridge, M. J.; Lain, M. J.; Johnson, I. D.; Roberts, A.; Beattie, S. D.; Dashwood, R.; Darr, J. A.; Bhagat, R. Towards high capacity Li-ion batteries based on silicon-graphene composite anodes and sub-micron V-doped LiFePO4 cathodes. Sci. Rep. 2016, 6, 37787.

169

Chen, Z.; Wang, C.; Lopez, J.; Lu, Z. D.; Cui, Y.; Bao, Z. A. High-areal-capacity silicon electrodes with low-cost silicon particles based on spatial control of self-healing binder. Adv. Energy Mater. 2015, 5, 1401826.

170

Wang, B.; Qiu, T. F.; Li, X. L.; Luo, B.; Hao, L.; Zhang, Y. B.; Zhi, L. J. Synergistically engineered self-standing silicon/carbon composite arrays as high performance lithium battery anodes. J. Mater. Chem. A 2015, 3, 494-498.

171

Yi, R.; Zai, J. T.; Dai, F.; Gordin, M. L.; Wang, D. H. Dual conductive network-enabled graphene/Si-C composite anode with high areal capacity for lithium-ion batteries. Nano Energy 2014, 6, 211-218.

172

Cho, W. C.; Kim, H. J.; Lee, H. I.; Seo, M. W.; Ra, H. W.; Yoon, S. J.; Mun, T. Y.; Kim, Y. K.; Kim, J. H.; Kim, B. H. et al. 5L-Scale magnesio-milling reduction of nanostructured SiO2 for high capacity silicon anodes in Lithium-ion batteries. Nano Lett. 2016, 16, 7261-7269.

173

Favors, Z.; Wang, W.; Bay, H. H.; Mutlu, Z.; Ahmed, K.; Liu, C.; Ozkan, M.; Ozkan, C. S. Scalable synthesis of nano-silicon from beach sand for long cycle life Li-ion batteries. Sci. Rep. 2014, 4, 5623.

174

Jung, D. S.; Ryou, M. H.; Sung, Y. J.; Park, S. B.; Choi, J. W. Recycling rice husks for high-capacity lithium battery anodes. Proc. Natl. Acad. Sci. USA. 2013, 110, 12229-12234.

175

Wang, J.; Meng, X. C.; Fan, X. L.; Zhang, W. B.; Zhang, H. Y.; Wang, C. S. Scalable synthesis of defect abundant Si nanorods for high-performance Li-ion battery anodes. ACS Nano 2015, 9, 6576-6586.

176

Zhang, Y. C.; You, Y.; Xin, S.; Yin, Y. X.; Zhang, J.; Wang, P.; Zheng, X. S.; Cao, F. F.; Guo, Y. G. Rice husk-derived hierarchical silicon/nitrogen-doped carbon/carbon nanotube spheres as low-cost and high-capacity anodes for lithium-ion batteries. Nano Energy 2016, 25, 120-127.

177

Zhang, Z. L.; Wang, Y. H.; Ren, W. F.; Tan, Q. Q.; Chen, Y. F.; Li, H.; Zhong, Z. Y.; Su, F. B. Scalable synthesis of interconnected porous silicon/carbon composites by the rochow reaction as high-performance anodes of lithium ion batteries. Angew. Chem., Int. Ed. 2014, 53, 5265-5269.

178

Zhu, B.; Jin, Y.; Tan, Y. L.; Zong, L. Q.; Hu, Y.; Chen, L.; Chen, Y. B.; Zhang, Q.; Zhu, J. Scalable production of Si nanoparticles directly from low grade sources for lithium-ion battery anode. Nano Lett. 2015, 15, 5750-5754.

179

Liu, N. A.; Hu, L. B.; McDowell, M. T.; Jackson, A.; Cui, Y. Prelithiated silicon nanowires as an anode for lithium ion batteries. ACS Nano 2011, 5, 6487-6493.

180

Forney, M. W.; Ganter, M. J.; Staub, J. W.; Ridgley, R. D.; Landi, B. J. Prelithiation of silicon-carbon nanotube anodes for lithium ion batteries by stabilized lithium metal powder (SLMP). Nano Lett. 2013, 13, 4158-4163.

181

Kim, H. J.; Choi, S.; Lee, S. J.; Seo, M. W.; Lee, J. G.; Deniz, E.; Lee, Y. J.; Kim, E. K.; Choi, J. W. Controlled prelithiation of silicon monoxide for high performance lithium-ion rechargeable full cells. Nano Lett. 2016, 16, 282-288.

182

Zhou, H. T.; Wang, X. H.; Chen, D. Li-metal-free prelithiation of Si-based negative electrodes for full Li-ion batteries. ChemSusChem 2015, 8, 2737-2744.

183

Zhao, J.; Lu, Z. D.; Wang, H. T.; Liu, W.; Lee, H. W.; Yan, K.; Zhuo, D.; Lin, D. C.; Liu, N. A.; Cui, Y. Artificial solid electrolyte interphase-protected LixSi nanoparticles: An efficient and stable prelithiation reagent for lithium-ion batteries. J. Am. Chem. Soc. 2015, 137, 8372-8375.

184

Zhao, J.; Lu, Z. D.; Liu, N. A.; Lee, H. W.; McDowell, M. T.; Cui, Y. Dry-air-stable lithium silicide-lithium oxide core-shell nanoparticles as high-capacity prelithiation reagents. Nat. Commun. 2014, 5, 5088.

185

Su, X.; Wu, Q. L.; Li, J. C.; Xiao, X. C.; Lott, A.; Lu, W. Q.; Sheldon, B. W.; Wu, J. Silicon-based nanomaterials for lithium-ion batteries: A review. Adv. Energy Mater. 2014, 4, 1300882.

186

Shim, J.; Striebel, K. A. The dependence of natural graphite anode performance on electrode density. J. Power Sources 2004, 130, 247-253.

Nano Research
Pages 3970-4002
Cite this article:
Ryu J, Hong D, Lee H-W, et al. Practical considerations of Si-based anodes for lithium-ion battery applications. Nano Research, 2017, 10(12): 3970-4002. https://doi.org/10.1007/s12274-017-1692-2

828

Views

107

Crossref

N/A

Web of Science

107

Scopus

0

CSCD

Altmetrics

Received: 27 March 2017
Revised: 21 May 2017
Accepted: 25 May 2017
Published: 05 August 2017
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017
Return