AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Two-photon lithography for 3D magnetic nanostructure fabrication

Gwilym Williams1,§Matthew Hunt1,§Benedikt Boehm2Andrew May1Michael Taverne3Daniel Ho3Sean Giblin1Dan Read1John Rarity3Rolf Allenspach2Sam Ladak1( )
School of Physics and Astronomy Cardiff UniversityCardiff, CF24 3AA UK
IBM Research-ZurichSäumerstrasse 48803Rüschlikon, Switzerland
Department of Electrical and Electronic Engineering University of BristolBristol, BS8 1UB UK

§ Gwilym Williams and Matthew Hunt contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Ferromagnetic materials have been utilized as recording media in data storage devices for many decades. The confinement of a material to a two-dimensional plane is a significant bottleneck in achieving ultra-high recording densities, and this has led to the proposition of three-dimensional (3D) racetrack memories that utilize domain wall propagation along the nanowires. However, the fabrication of 3D magnetic nanostructures of complex geometries is highly challenging and is not easily achieved with standard lithography techniques. Here, we demonstrate a new approach to construct 3D magnetic nanostructures of complex geometries using a combination of two-photon lithography and electrochemical deposition. The magnetic properties are found to be intimately related to the 3D geometry of the structure, and magnetic imaging experiments provide evidence of domain wall pinning at the 3D nanostructured junction.

Electronic Supplementary Material

Download File(s)
nr-11-2-845_ESM.pdf (605.2 KB)

References

1

Tallents, G.; Wagenaars, E.; Pert, G. Optical lithography: Lithography at EUV wavelengths. Nat. Photonics 2010, 4, 809-811.

2

Parkin, S. S. P.; Hayashi, M.; Thomas, L. Magnetic domain-wall racetrack memory. Science 2008, 320, 190-194.

3

Da Col, S.; Jamet, S.; Rougemaille, N.; Locatelli, A.; Mentes, T. O.; Burgos, B. S.; Afid, R.; Darques, M.; Cagnon, L.; Toussaint, J. C. et al. Observation of Bloch-point domain walls in cylindrical magnetic nanowires. Phys. Rev. B 2014, 89, 180405.

4

Pylypovskyi, O. V.; Sheka, D. D.; Kravchuk, V. P.; Yershov, K. V.; Makarov, D.; Gaididei, Y. Rashba torque driven domain wall motion in magnetic helices. Sci. Rep. 2016, 6, 23316.

5

Shishkin, I. S.; Mistonov, A. A.; Dubitskiy, I. S.; Grigoryeva, N. A.; Menzel, D.; Grigoriev, S. V. Nonlinear geometric scaling of coercivity in a three-dimensional nanoscale analog of spin ice. Phys. Rev. B 2016, 94, 064424.

6

Bicelli, L. P.; Bozzini, B.; Mele, C.; D'Urzo, L. A review of nanostructural aspects of metal electrodeposition. Int. J. Electrochem. Sci. 2008, 3, 356-408.

7

Ivanov, Y. P.; Chuvilin, A.; Vivas, L. G.; Kosel, J.; Chubykalo-Fesenko, O.; Vázquez, M. Single crystalline cylindrical nanowires—Toward dense 3D arrays of magnetic vortices. Sci. Rep. 2016, 6, 23844.

8

da Câmara Santa Clara Gomes, T.; De La Torre Medina, J.; Lemaitre, M.; Piraux, L. Magnetic and magnetoresistive properties of 3D interconnected NiCo nanowire networks. Nanoscale Res. Lett. 2016, 11, 466.

9

De Teresa, J. M.; Fernández-Pacheco, A.; Córdoba, R.; Serrano-Ramón, L.; Sangiao, S.; Ibarra, M. R. Review of magnetic nanostructures grown by focused electron beam induced deposition (FEBID). J. Phys. D Appl. Phys. 2016, 49, 243003.

10

Fernández-Pacheco, A.; Serrano-Ramón, L.; Michalik, J. M.; Ibarra, M. R.; De Teresa, J. M.; O'Brien, L.; Petit, D.; Lee, J.; Cowburn, R. P. Three dimensional magnetic nanowires grown by focused electron-beam induced deposition. Sci. Rep. 2013, 3, 1492.

11

Bisoyi, H. K.; Li, Q. Light-directing chiral liquid crystal nanostructures: From 1D to 3D. Acc. Chem. Res. 2014, 47, 3184-3195.

12

Wang, L.; Li, Q. Stimuli-directing self-organized 3D liquid-crystalline nanostructures: From materials design to photonic applications. Adv. Funct. Mater. 2016, 26, 10-28.

13

Xue, C. M.; Gao, M.; Xue, Y. H.; Zhu, L.; Dai, L. M.; Urbas, A.; Li, Q. Building 3D layer-by-layer graphene-gold nanoparticle hybrid architecture with tunable interlayer distance. J. Phys. Chem. C 2014, 118, 15332-15338.

14

Wang, L. B.; Li, F. Y.; Kuang, M. N.; Gao, M.; Wang, J. X.; Huang, Y.; Jiang, L.; Song, Y. L. Interface manipulation for printing three-dimensional microstructures under magnetic guiding. Small 2015, 11, 1900-1904.

15

Wei, L.; Dong, Z. C.; Kuang, M. X.; Li, Y. N.; Li, F. Y.; Jiang, L.; Song, Y. L. Printing patterned fine 3D structures by manipulating the three phase contact line. Adv. Funct. Mater. 2015, 25, 2237-2242.

16

Sun, H. -B.; Kawata, S. Two-photon photopolymerization and 3D lithographic microfabrication. In NMR·3D Analysis Photopolymerization. Advances in Polymer Science; Fatkullin, N.; Ikehara, T.; Jinnai, H.; Kawata, S.; Kimmich, R.; Nishi, T.; Nishikawa, Y.; Sun, H. -B., Eds.; Springer: Berlin Heidelberg, 2004; pp169-273.

17

Cao, Y. Y.; Takeyasu, N.; Tanaka, T.; Duan, X. M.; Kawata, S. 3D metallic nanostructure fabrication by surfactant-assisted multiphoton-induced reduction. Small 2009, 5, 1144-1148.

18

Cao, Z. H.; Zheng, M. L.; Dong, X. Z.; Jin, F.; Zhao, Z. S.; Duan, X. M. Two-photon nanolithography of positive photoresist thin film with ultrafast laser direct writing. Appl. Phys. Lett. 2013, 102, 201108.

19

MicroChemicals. Development of photoresists [Online]. http://www.microchemicals.com (accessed Mar 14, 2017).

20

Mehdizadeh, S.; Dukovic, J. O.; Andricacos, P. C.; Romankiw, L. T.; Cheh, H. Y. The influence of lithographic patterning on current distribution: A model for microfabrication by electrodeposition. J. Electrochem. Soc. 1992, 139, 78-91.

21

Klar, T. A.; Wollhofen, R.; Jacak, J. Sub-Abbe resolution: from STED microscopy to STED lithography. Phys. Scr. 2014, 2014, 014049.

22

Ivanov, Y. P.; Vivas, L. G.; Asenjo, A.; Chuvilin, A.; Chubykalo-Fesenko, O.; Vázquez, M. Magnetic structure of a single-crystal hcp electrodeposited cobalt nanowire. Europhys. Lett. 2013, 102, 17009.

23

Anders, S.; Padmore, H. A.; Duarte, R. M.; Renner, T.; Stammler, T.; Scholl, A.; Scheinfein, M. R.; Stöhr, J.; Séve, L.; Sinkovic, B. Photoemission electron microscope for the study of magnetic materials. Rev. Sci. Instrum. 1999, 70, 3973-3981.

24

De Graef, M. Recent progress in Lorentz transmission electron microscopy. ESOMAT 2009, 01002.

25

Zvezdin, A. K.; Kotov, V. A. Modern Magnetooptics and Magnetooptical Materials; CRC Press: Boca Raton, 1997.

26

Pirota, K. R.; Béron, F.; Zanchet, D.; Rocha, T. C. R.; Navas, D.; Torrejón, J.; Vazquez, M.; Knobel, M. Magnetic and structural properties of fcc/hcp bi-crystalline multilayer Co nanowire arrays prepared by controlled electroplating. J. Appl. Phys. 2011, 109, 083919.

27

Henry, Y.; Ounadjela, K.; Piraux, L.; Dubois, S.; George, J. M.; Duvail, J. L. Magnetic anisotropy and domain patterns in electrodeposited cobalt nanowires. Eur. Phys. J. B 2001, 20, 35-54.

28

Xu, Y. B.; Vaz, C. A. F.; Hirohata, A.; Yao, C. C.; Lee, W. Y.; Bland, J. A. C.; Rousseaux, F.; Cambril, E.; Launois, H. Domain wall trapping probed by magnetoresistance and magnetic force microscopy in submicron ferromagnetic wire structures. J. Appl. Phys. 1999, 85, 6178-6180.

29

Mueller, P.; Thiel, M.; Wegener, M. 3D direct laser writing using a 405 nm diode laser. Opt. Lett. 2014, 39, 6847-6850.

30

Allenspach, R. Spin-polarized scanning electron microscopy. IBM J. Res. Dev. 2000, 44, 553-570.

Nano Research
Pages 845-854
Cite this article:
Williams G, Hunt M, Boehm B, et al. Two-photon lithography for 3D magnetic nanostructure fabrication. Nano Research, 2018, 11(2): 845-854. https://doi.org/10.1007/s12274-017-1694-0

784

Views

63

Downloads

98

Crossref

N/A

Web of Science

101

Scopus

4

CSCD

Altmetrics

Received: 14 March 2017
Revised: 08 May 2017
Accepted: 27 May 2017
Published: 12 July 2017
© The author(s) 2018

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Return