Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Si dangling bonds at the interface of quasi-free-standing monolayer graphene (QFMLG) are known to act as scattering centers that can severely affect carrier mobility. Herein, we investigate the atomic and electronic structure of Si dangling bonds in QFMLG using low-temperature scanning tunneling microscopy/spectroscopy (STM/STS), atomic force microscopy (AFM), and density functional theory (DFT) calculations. Two types of defects with different contrast were observed on a flat graphene terrace by STM and AFM; in particular, their STM contrast varied with the bias voltage. Moreover, these defects showed characteristic STS peaks at different energies, 1.1 and 1.4 eV. The comparison of the experimental data with the DFT calculations indicates that the defects with STS peak energies of 1.1 and 1.4 eV consist of clusters of three and four Si dangling bonds, respectively. The relevance of the present results for the optimization of graphene synthesis is discussed.
Bolotin, K. I.; Sikes, K. J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H. L. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 2008, 146, 351-355.
Goler, S.; Coletti, C.; Piazza, V.; Pingue, P.; Colangelo, F.; Pellegrini, V.; Emtsev, K. V.; Forti, S.; Starke, U.; Beltram, F.; Heun, S. Revealing the atomic structure of the buffer layer between SiC (0001) and epitaxial graphene. Carbon 2013, 51, 249-254.
Riedl, C.; Coletti, C.; Iwasaki, T.; Zakharov, A. A.; Starke, U. Quasi-free-standing epitaxial graphene on SiC obtained by hydrogen intercalation. Phys. Rev. Lett. 2009, 103, 246804.
Bocquet, F. C.; Bisson, R.; Themlin, J. -M.; Layet, J. -M.; Angot, T. Reversible hydrogenation of deuterium-intercalated quasi-free-standing graphene on SiC(0001). Phys. Rev. B 2012, 85, 201401.
Speck, F.; Jobst, J.; Fromm, F.; Ostler, M.; Waldmann, D.; Hundhausen, M.; Weber, H. B.; Seyller, T. The quasi-free-standing nature of graphene on H-saturated SiC(0001). Appl. Phys. Lett. 2011, 99, 122106.
Ciuk, T.; Caban, P.; Strupinski, W. Charge carrier concentration and offset voltage in quasi-free-standing monolayer chemical vapor deposition graphene on SiC. Carbon 2016, 101, 431-438.
Forti, S.; Emtsev, K. V.; Coletti, C.; Zakharov, A. A.; Riedl, C.; Starke, U. Large-area homogeneous quasifree standing epitaxial graphene on SiC(0001): Electronic and structural characterization. Phys. Rev. B 2011, 84, 125449.
Murata, Y.; Mashoff, T.; Takamura, M.; Tanabe, S.; Hibino, H.; Beltram, F.; Heun, S. Correlation between morphology and transport properties of quasi-free-standing monolayer graphene. Appl. Phys. Lett. 2014, 105, 221604.
Sclauzero, G.; Pasquarello, A. Intercalation of H at the graphene/SiC(0001) interface: Structure and stability from first principles. Appl. Surf. Sci. 2014, 291, 64-68.
Deretzis, I.; La Magna, A. Interaction between hydrogen flux and carbon monolayer on SiC(0001): Graphene formation kinetics. Nanoscale 2013, 5, 671-680.
Yamasue, K.; Fukidome, H.; Funakubo, K.; Suemitsu, M.; Cho, Y. Interfacial charge states in graphene on SiC studied by noncontact scanning nonlinear dielectric potentiometry. Phys. Rev. Lett. 2015, 114, 226103.
Tanabe, S.; Takamura, M.; Harada, Y.; Kageshima, H.; Hibino, H. Effects of hydrogen intercalation on transport properties of quasi-free-standing monolayer graphene. Jpn. J. Appl. Phys. 2014, 53, 04EN01.
Giessibl, F. J. High-speed force sensor for force microscopy and profilometry utilizing a quartz tuning fork. Appl. Phys. Lett. 1998, 73, 3956-3958.
Giessibl, F. J. Advances in atomic force microscopy. Rev. Mod. Phys. 2003, 75, 949-983.
Albrecht, T. R.; Grütter, P.; Horne, D.; Rugar, D. Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity. J. Appl. Phys. 1991, 69, 668-673.
Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I. et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 2009, 21, 395502.
Cavallucci, T.; Tozzini, V. Multistable rippling of graphene on SiC: A density functional theory study. J. Phys. Chem. C 2016, 120, 7670-7677.
Rappe, A. M.; Rabe, K. M.; Kaxiras, E.; Joannopoulos, J. D. Optimized pseudopotentials. Phys. Rev. B 1990, 41, 1227-1230.
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.
Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787-1799.
Ugeda, M. M.; Fernández-Torre, D.; Brihuega, I.; Pou, P.; Martínez-Galera, A. J.; Pérez, R.; Gómez-Rodríguez, J. M. Point defects on graphene on metals. Phys. Rev. Lett. 2011, 107, 116803.
Ugeda, M. M.; Brihuega, I.; Hiebel, F.; Mallet, P.; Veuillen, J. -Y.; Gómez-Rodríguez, J. M.; Ynduráin, F. Electronic and structural characterization of divacancies in irradiated graphene. Phys. Rev. B 2012, 85, 121402.
Mashoff, T.; Convertino, D.; Miseikis, V.; Coletti, C.; Piazza, V.; Tozzini, V.; Beltram, F.; Heun, S. Increasing the active surface of titanium islands on graphene by nitrogen sputtering. Appl. Phys. Lett. 2015, 106, 083901.
Boneschanscher, M. P.; van der Lit, J.; Sun, Z. X.; Swart, I.; Liljeroth, P.; Vanmaekelbergh, D. Quantitative atomic resolution force imaging on epitaxial graphene with reactive and nonreactive AFM probes. ACS Nano 2012, 6, 10216- 10221.
Schuler, B.; Liu, W.; Tkatchenko, A.; Moll, N.; Meyer, G.; Mistry, A.; Fox, D.; Gross, L. Adsorption geometry determination of single molecules by atomic force microscopy. Phys. Rev. Lett. 2013, 111, 106103.
Cavallucci, T.; Murata, Y.; Heun, S.; Tozzini, V. H-coverage defects in quasi free standing graphenemonolayer on SiC: A density functional theory study. in preparation.
Zhang, Y. B.; Brar, V. W.; Wang, F.; Girit, C.; Yayon, Y.; Panlasigui, M.; Zettl, A.; Crommie, M. F. Giant phonon-induced conductance in scanning tunnelling spectroscopy of gate-tunable graphene. Nat. Phys. 2008, 4, 627-630.
Sławińska, J.; Aramberri, H.; Muñoz, M. C.; Cerdá, J. I. Ab initio study of the relationship between spontaneous polarization and p-type doping in quasi-freestanding graphene on H-passivated SiC surfaces. Carbon 2015, 93, 88-104.
Lin, Y. P.; Ksari, Y.; Themlin, J. M. Hydrogenation of the buffer-layer graphene on 6H-SiC (0001): A possible route for the engineering of graphene-based devices. Nano Res. 2015, 8, 839-850.
Hiebel, F.; Mallet, P.; Veuillen, J. Y.; Magaud, L. Impact of local stacking on the graphene-impurity interaction: Theory and experiments. Phys. Rev. B 2012, 86, 205421.
822
Views
13
Downloads
15
Crossref
N/A
Web of Science
16
Scopus
1
CSCD
Altmetrics
This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.