AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Atomic and electronic structure of Si dangling bonds in quasi-free-standing monolayer graphene

Yuya Murata1Tommaso Cavallucci1Valentina Tozzini1Niko Pavliček2Leo Gross2Gerhard Meyer2Makoto Takamura3Hiroki Hibino3,Fabio Beltram1Stefan Heun1( )
NESTIstituto Nanoscienze-CNR and Scuola Normale SuperiorePiazza San Silvestro 1256127Pisa, Italy
IBM Research-ZurichSäumerstrasse 48803Rüschlikon, Switzerland
NTT Basic Research Laboratories 3-1 Morinosato WakamiyaAtsugi, Kanagawa 243-0198 Japan

Present address: Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan

Show Author Information

Graphical Abstract

Abstract

Si dangling bonds at the interface of quasi-free-standing monolayer graphene (QFMLG) are known to act as scattering centers that can severely affect carrier mobility. Herein, we investigate the atomic and electronic structure of Si dangling bonds in QFMLG using low-temperature scanning tunneling microscopy/spectroscopy (STM/STS), atomic force microscopy (AFM), and density functional theory (DFT) calculations. Two types of defects with different contrast were observed on a flat graphene terrace by STM and AFM; in particular, their STM contrast varied with the bias voltage. Moreover, these defects showed characteristic STS peaks at different energies, 1.1 and 1.4 eV. The comparison of the experimental data with the DFT calculations indicates that the defects with STS peak energies of 1.1 and 1.4 eV consist of clusters of three and four Si dangling bonds, respectively. The relevance of the present results for the optimization of graphene synthesis is discussed.

Electronic Supplementary Material

Download File(s)
nr-11-2-864_ESM.pdf (1,009.5 KB)

References

1

Bolotin, K. I.; Sikes, K. J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H. L. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 2008, 146, 351-355.

2

Goler, S.; Coletti, C.; Piazza, V.; Pingue, P.; Colangelo, F.; Pellegrini, V.; Emtsev, K. V.; Forti, S.; Starke, U.; Beltram, F.; Heun, S. Revealing the atomic structure of the buffer layer between SiC (0001) and epitaxial graphene. Carbon 2013, 51, 249-254.

3

Riedl, C.; Coletti, C.; Iwasaki, T.; Zakharov, A. A.; Starke, U. Quasi-free-standing epitaxial graphene on SiC obtained by hydrogen intercalation. Phys. Rev. Lett. 2009, 103, 246804.

4

Bocquet, F. C.; Bisson, R.; Themlin, J. -M.; Layet, J. -M.; Angot, T. Reversible hydrogenation of deuterium-intercalated quasi-free-standing graphene on SiC(0001). Phys. Rev. B 2012, 85, 201401.

5

Speck, F.; Jobst, J.; Fromm, F.; Ostler, M.; Waldmann, D.; Hundhausen, M.; Weber, H. B.; Seyller, T. The quasi-free-standing nature of graphene on H-saturated SiC(0001). Appl. Phys. Lett. 2011, 99, 122106.

6

Ciuk, T.; Caban, P.; Strupinski, W. Charge carrier concentration and offset voltage in quasi-free-standing monolayer chemical vapor deposition graphene on SiC. Carbon 2016, 101, 431-438.

7

Forti, S.; Emtsev, K. V.; Coletti, C.; Zakharov, A. A.; Riedl, C.; Starke, U. Large-area homogeneous quasifree standing epitaxial graphene on SiC(0001): Electronic and structural characterization. Phys. Rev. B 2011, 84, 125449.

8

Murata, Y.; Mashoff, T.; Takamura, M.; Tanabe, S.; Hibino, H.; Beltram, F.; Heun, S. Correlation between morphology and transport properties of quasi-free-standing monolayer graphene. Appl. Phys. Lett. 2014, 105, 221604.

9

Sclauzero, G.; Pasquarello, A. Intercalation of H at the graphene/SiC(0001) interface: Structure and stability from first principles. Appl. Surf. Sci. 2014, 291, 64-68.

10

Deretzis, I.; La Magna, A. Interaction between hydrogen flux and carbon monolayer on SiC(0001): Graphene formation kinetics. Nanoscale 2013, 5, 671-680.

11

Yamasue, K.; Fukidome, H.; Funakubo, K.; Suemitsu, M.; Cho, Y. Interfacial charge states in graphene on SiC studied by noncontact scanning nonlinear dielectric potentiometry. Phys. Rev. Lett. 2015, 114, 226103.

12

Tanabe, S.; Takamura, M.; Harada, Y.; Kageshima, H.; Hibino, H. Effects of hydrogen intercalation on transport properties of quasi-free-standing monolayer graphene. Jpn. J. Appl. Phys. 2014, 53, 04EN01.

13

Giessibl, F. J. High-speed force sensor for force microscopy and profilometry utilizing a quartz tuning fork. Appl. Phys. Lett. 1998, 73, 3956-3958.

14

Giessibl, F. J. Advances in atomic force microscopy. Rev. Mod. Phys. 2003, 75, 949-983.

15

Albrecht, T. R.; Grütter, P.; Horne, D.; Rugar, D. Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity. J. Appl. Phys. 1991, 69, 668-673.

16

Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I. et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 2009, 21, 395502.

17

Cavallucci, T.; Tozzini, V. Multistable rippling of graphene on SiC: A density functional theory study. J. Phys. Chem. C 2016, 120, 7670-7677.

18

Rappe, A. M.; Rabe, K. M.; Kaxiras, E.; Joannopoulos, J. D. Optimized pseudopotentials. Phys. Rev. B 1990, 41, 1227-1230.

19

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.

20

Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787-1799.

21

Ugeda, M. M.; Fernández-Torre, D.; Brihuega, I.; Pou, P.; Martínez-Galera, A. J.; Pérez, R.; Gómez-Rodríguez, J. M. Point defects on graphene on metals. Phys. Rev. Lett. 2011, 107, 116803.

22

Ugeda, M. M.; Brihuega, I.; Hiebel, F.; Mallet, P.; Veuillen, J. -Y.; Gómez-Rodríguez, J. M.; Ynduráin, F. Electronic and structural characterization of divacancies in irradiated graphene. Phys. Rev. B 2012, 85, 121402.

23

Mashoff, T.; Convertino, D.; Miseikis, V.; Coletti, C.; Piazza, V.; Tozzini, V.; Beltram, F.; Heun, S. Increasing the active surface of titanium islands on graphene by nitrogen sputtering. Appl. Phys. Lett. 2015, 106, 083901.

24

Boneschanscher, M. P.; van der Lit, J.; Sun, Z. X.; Swart, I.; Liljeroth, P.; Vanmaekelbergh, D. Quantitative atomic resolution force imaging on epitaxial graphene with reactive and nonreactive AFM probes. ACS Nano 2012, 6, 10216- 10221.

25

Schuler, B.; Liu, W.; Tkatchenko, A.; Moll, N.; Meyer, G.; Mistry, A.; Fox, D.; Gross, L. Adsorption geometry determination of single molecules by atomic force microscopy. Phys. Rev. Lett. 2013, 111, 106103.

26

Cavallucci, T.; Murata, Y.; Heun, S.; Tozzini, V. H-coverage defects in quasi free standing graphenemonolayer on SiC: A density functional theory study. in preparation.

27

Zhang, Y. B.; Brar, V. W.; Wang, F.; Girit, C.; Yayon, Y.; Panlasigui, M.; Zettl, A.; Crommie, M. F. Giant phonon-induced conductance in scanning tunnelling spectroscopy of gate-tunable graphene. Nat. Phys. 2008, 4, 627-630.

28

Sławińska, J.; Aramberri, H.; Muñoz, M. C.; Cerdá, J. I. Ab initio study of the relationship between spontaneous polarization and p-type doping in quasi-freestanding graphene on H-passivated SiC surfaces. Carbon 2015, 93, 88-104.

29

Lin, Y. P.; Ksari, Y.; Themlin, J. M. Hydrogenation of the buffer-layer graphene on 6H-SiC (0001): A possible route for the engineering of graphene-based devices. Nano Res. 2015, 8, 839-850.

30

Hiebel, F.; Mallet, P.; Veuillen, J. Y.; Magaud, L. Impact of local stacking on the graphene-impurity interaction: Theory and experiments. Phys. Rev. B 2012, 86, 205421.

Nano Research
Pages 864-873
Cite this article:
Murata Y, Cavallucci T, Tozzini V, et al. Atomic and electronic structure of Si dangling bonds in quasi-free-standing monolayer graphene. Nano Research, 2018, 11(2): 864-873. https://doi.org/10.1007/s12274-017-1697-x

822

Views

13

Downloads

15

Crossref

N/A

Web of Science

16

Scopus

1

CSCD

Altmetrics

Received: 12 April 2017
Revised: 29 May 2017
Accepted: 01 June 2017
Published: 12 July 2017
© The author(s) 2017

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Return