Graphical Abstract

In this work, we described a proof-of-concept method to promote the activity and selectivity of Pd nanoparticles for heterogeneous catalysis (exemplified by C–C coupling reactions) by using acid sites within a zeolite framework. The Pd nanoparticles were encapsulated inside the crystalline walls of mesoporous H-ZSM-5 leading to hybrid samples (denoted as Pd@mZ-x-H) with controlled number of acid sites. A linear relationship between the number of acid sites of the zeolite nanocrystals and the catalytic activities of the Pd nanoparticles in organic reactions was established. Moreover, the shape-dependent selectivity of Pd@mZ-x-H was not sacrificed when the final activity was enhanced.
Suzuki, A. Cross-coupling reactions of organoboranes: An easy way to construct C-C bonds (Nobel Lecture). Angew. Chem., Int. Ed. 2011, 50, 6722-6737.
Cai, Y. Y.; Li, X. H.; Zhang, Y. N.; Wei, X.; Wang, K. X.; Chen, J. S. Highly efficient dehydrogenation of formic acid over a palladium-nanoparticle-based Mott-Schottky photocatalyst. Angew. Chem., Int. Ed. 2013, 52, 11822-11825.
Gong, L. -H.; Cai, Y. -Y.; Li, X. -H.; Zhang, Y. -N.; Su, J.; Chen, J. -S. Room-temperature transfer hydrogenation and fast separation of unsaturated compounds over heterogeneous catalysts in an aqueous solution of formic acid. Green Chem. 2014, 16, 3746-3751.
Gurrath, M.; Kuretzky, T.; Boehm, H. P.; Okhlopkova, L. B.; Lisitsyn, A. S.; Likholobov, V. A. Palladium catalysts on activated carbon supports: Influence of reduction temperature, origin of the support and pretreatments of the carbon surface. Carbon 2000, 38, 1241-1255.
Parlett, C. M. A.; Bruce, D. W.; Hondow, N. S.; Lee, A. F.; Wilson, K. Support-enhanced selective aerobic alcohol oxidation over Pd/mesoporous silicas. ACS Catal. 2011, 1, 636-640.
Chen, Y. Z.; Xu, Q.; Yu, S. H.; Jiang, H. L. Tiny Pd@Co core-shell nanoparticles confined inside a metal-organic framework for highly efficient catalysis. Small 2015, 11, 71-76.
Yang, Q. H.; Xu, Q.; Yu, S. -H.; Jiang, H. -L. Pd Nanocubes@ZIF-8: Integration of plasmon-driven photothermal conversion with a metal-organic framework for efficient and selective catalysis. Angew. Chem., Int. Ed. 2016, 55, 3685-3689.
Parlett, C. M.; Keshwalla, P.; Wainwright, S. G.; Bruce, D. W.; Hondow, N. S.; Wilson, K.; Lee, A. F. Hierarchically ordered nanoporous Pd/SBA-15 catalyst for the aerobic selective oxidation of sterically challenging allylic alcohols. ACS Catal. 2013, 3, 2122-2129.
Liu, R.; Mahurin, S. M.; Li, C.; Unocic, R. R.; Idrobo, J. C.; Gao, H. J.; Pennycook, S. J.; Dai, S. Dopamine as a carbon source: The controlled synthesis of hollow carbon spheres and yolk-structured carbon nanocomposites. Angew. Chem., Int. Ed. 2011, 50, 6799-6802.
Wang, Z. C.; Chen, W.; Han, Z. L.; Zhu, J.; Lu, N.; Yang, Y.; Ma, D. K.; Chen, Y.; Huang, S. M. Pd embedded in porous carbon (Pd@CMK-3) as an active catalyst for Suzuki reactions: Accelerating mass transfer to enhance the reaction rate. Nano Res. 2014, 7, 1254-1262.
Cui, T. -L.; Ke, W. -Y.; Zhang, W. -B.; Wang, H. -H.; Li, X. -H.; Chen, J. -S. Encapsulating palladium nanoparticles inside mesoporous MFI zeolite nanocrystals for shape-selective catalysis. Angew. Chem., Int. Ed. 2016, 55, 9178-9182.
Wang, N.; Sun, Q. M.; Bai, R. S.; Li, X.; Guo, G. Q.; Yu, J. H. In situ confinement of ultrasmall Pd clusters within nanosized silicalite-1 zeolite for highly efficient catalysis of hydrogen generation. J. Am. Chem. Soc. 2016, 138, 7484-7487.
Wang, C. T.; Wang, L.; Zhang, J.; Wang, H.; Lewis, J. P.; Xiao, F. -S. Correction to "product selectivity controlled by zeolite crystals in biomass hydrogenation over a palladium catalyst". J. Am. Chem. Soc. 2016, 138, 7880-7883.
Li, L.; Li, G. D.; Yan, C.; Mu, X. Y.; Pan, X. L.; Zou, X. X.; Wang, K. X.; Chen, J. S. efficient sunlight-driven dehydrogenative coupling of methane to ethane over a Zn+-modified zeolite. Angew. Chem., Int. Ed. 2011, 50, 8299-8303.
Li, L.; Zhou, X. S.; Li, G. D.; Pan, X. L.; Chen, J. S. Unambiguous observation of electron transfer from a zeolite framework to organic molecules. Angew. Chem., Int. Ed. 2009, 48, 6678-6682.
Li, X. -H.; Wang, X. C.; Antonietti, M. Mesoporous g-C3N4 nanorods as multifunctional supports of ultrafine metal nanoparticles: Hydrogen generation from water and reduction of nitrophenol with tandem catalysis in one step. Chem. Sci. 2012, 3, 2170-2174.
Joo, S. H.; Choi, S. J.; Oh, I.; Kwak, J.; Liu, Z.; Terasaki, O.; Ryoo, R. Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature 2001, 412, 169-172.
Choi, M.; Cho, H. S.; Srivastava, R.; Venkatesan, C.; Choi, D. -H.; Ryoo, R. Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity. Nat. Mater. 2006, 5, 718-723.
Li, X. H.; Baar, M.; Blechert, S.; Antonietti, M. Facilitating room-temperature Suzuki coupling reaction with light: Mott-Schottky photocatalyst for C-C-coupling. Sci. Rep. 2013, 3, 1743.
Wang, F.; Li, C. H.; Chen, H. J.; Jiang, R. B.; Sun, L. D.; Li, Q.; Wang, J. F.; Yu, J. C.; Yan, C. H. Plasmonic harvesting of light energy for Suzuki coupling reactions. J. Am. Chem. Soc. 2013, 135, 5588-5601.
Huang, X. Q.; Tang, S. H.; Liu, B. J.; Ren, B.; Zheng, N. F. Enhancing the photothermal stability of plasmonic metal nanoplates by a core-shell architecture. Adv. Mater. 2011, 23, 3420-3425.
Bai, S.; Wang, X. J.; Hu, C. Y.; Xie, M. L.; Jiang, J.; Xiong, Y. J. Two-dimensional g-C3N4: An ideal platform for examining facet selectivity of metal co-catalysts in photocatalysis. Chem. Commun. 2014, 50, 6094-6097.
Cui, T. L.; Li, X. H.; Lv, L. B.; Wang, K. X.; Su, J.; Chen, J. S. Nanoscale Kirkendall growth of silicalite-1 zeolite mesocrystals with controlled mesoporosity and size. Chem. Commun. 2015, 51, 12563-12566.
Zhang, W. P.; Ma, D.; Han, X. W.; Liu, X. M.; Bao, X. H.; Guo, X. W.; Wang, X. S. Metne dehydro-aromatization over Mo/HZSM-5 in the absence of oxygen: A multinuclear solid-state NMR study of the interaction between supported Mo species and HZSM-5 zeolite with different crystal sizes. J. Catal. 1999, 188, 393-402.
Hartwig, J. F. Electronic effects on reductive elimination to form carbon-carbon and carbon-heteroatom bonds from palladium(Ⅱ) complexes. Inorg. Chem. 2007, 46, 1936-1947.
Jover, J.; Fey, N.; Purdie, M.; Lloyd-Jones, G. C.; Harvey, J. N. A computational study of phosphine ligand effects in Suzuki-Miyaura coupling. J. Mol. Catal. A Chem. 2010, 324, 39-47.