Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Mesoporous H-ZSM-5 nanocrystals with programmable number of acid sites as "solid ligands" to activate Pd nanoparticles for C–C coupling reactions

Wenyu KeTianlu CuiQiuying YuMengying WangLibing LvHonghui WangZhidong JiangXinhHao Li()Jiesheng Chen()
School of Chemistry and Chemical EngineeringShanghai Jiao Tong UniversityShanghai200240China
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

In this work, we described a proof-of-concept method to promote the activity and selectivity of Pd nanoparticles for heterogeneous catalysis (exemplified by C–C coupling reactions) by using acid sites within a zeolite framework. The Pd nanoparticles were encapsulated inside the crystalline walls of mesoporous H-ZSM-5 leading to hybrid samples (denoted as Pd@mZ-x-H) with controlled number of acid sites. A linear relationship between the number of acid sites of the zeolite nanocrystals and the catalytic activities of the Pd nanoparticles in organic reactions was established. Moreover, the shape-dependent selectivity of Pd@mZ-x-H was not sacrificed when the final activity was enhanced.

Electronic Supplementary Material

Download File(s)
nr-11-2-874_ESM.pdf (5.1 MB)

References

1

Suzuki, A. Cross-coupling reactions of organoboranes: An easy way to construct C-C bonds (Nobel Lecture). Angew. Chem., Int. Ed. 2011, 50, 6722-6737.

2

Cai, Y. Y.; Li, X. H.; Zhang, Y. N.; Wei, X.; Wang, K. X.; Chen, J. S. Highly efficient dehydrogenation of formic acid over a palladium-nanoparticle-based Mott-Schottky photocatalyst. Angew. Chem., Int. Ed. 2013, 52, 11822-11825.

3

Gong, L. -H.; Cai, Y. -Y.; Li, X. -H.; Zhang, Y. -N.; Su, J.; Chen, J. -S. Room-temperature transfer hydrogenation and fast separation of unsaturated compounds over heterogeneous catalysts in an aqueous solution of formic acid. Green Chem. 2014, 16, 3746-3751.

4

Gurrath, M.; Kuretzky, T.; Boehm, H. P.; Okhlopkova, L. B.; Lisitsyn, A. S.; Likholobov, V. A. Palladium catalysts on activated carbon supports: Influence of reduction temperature, origin of the support and pretreatments of the carbon surface. Carbon 2000, 38, 1241-1255.

5

Parlett, C. M. A.; Bruce, D. W.; Hondow, N. S.; Lee, A. F.; Wilson, K. Support-enhanced selective aerobic alcohol oxidation over Pd/mesoporous silicas. ACS Catal. 2011, 1, 636-640.

6

Chen, Y. Z.; Xu, Q.; Yu, S. H.; Jiang, H. L. Tiny Pd@Co core-shell nanoparticles confined inside a metal-organic framework for highly efficient catalysis. Small 2015, 11, 71-76.

7

Yang, Q. H.; Xu, Q.; Yu, S. -H.; Jiang, H. -L. Pd Nanocubes@ZIF-8: Integration of plasmon-driven photothermal conversion with a metal-organic framework for efficient and selective catalysis. Angew. Chem., Int. Ed. 2016, 55, 3685-3689.

8

Parlett, C. M.; Keshwalla, P.; Wainwright, S. G.; Bruce, D. W.; Hondow, N. S.; Wilson, K.; Lee, A. F. Hierarchically ordered nanoporous Pd/SBA-15 catalyst for the aerobic selective oxidation of sterically challenging allylic alcohols. ACS Catal. 2013, 3, 2122-2129.

9

Liu, R.; Mahurin, S. M.; Li, C.; Unocic, R. R.; Idrobo, J. C.; Gao, H. J.; Pennycook, S. J.; Dai, S. Dopamine as a carbon source: The controlled synthesis of hollow carbon spheres and yolk-structured carbon nanocomposites. Angew. Chem., Int. Ed. 2011, 50, 6799-6802.

10

Wang, Z. C.; Chen, W.; Han, Z. L.; Zhu, J.; Lu, N.; Yang, Y.; Ma, D. K.; Chen, Y.; Huang, S. M. Pd embedded in porous carbon (Pd@CMK-3) as an active catalyst for Suzuki reactions: Accelerating mass transfer to enhance the reaction rate. Nano Res. 2014, 7, 1254-1262.

11

Cui, T. -L.; Ke, W. -Y.; Zhang, W. -B.; Wang, H. -H.; Li, X. -H.; Chen, J. -S. Encapsulating palladium nanoparticles inside mesoporous MFI zeolite nanocrystals for shape-selective catalysis. Angew. Chem., Int. Ed. 2016, 55, 9178-9182.

12

Wang, N.; Sun, Q. M.; Bai, R. S.; Li, X.; Guo, G. Q.; Yu, J. H. In situ confinement of ultrasmall Pd clusters within nanosized silicalite-1 zeolite for highly efficient catalysis of hydrogen generation. J. Am. Chem. Soc. 2016, 138, 7484-7487.

13

Wang, C. T.; Wang, L.; Zhang, J.; Wang, H.; Lewis, J. P.; Xiao, F. -S. Correction to "product selectivity controlled by zeolite crystals in biomass hydrogenation over a palladium catalyst". J. Am. Chem. Soc. 2016, 138, 7880-7883.

14

Li, L.; Li, G. D.; Yan, C.; Mu, X. Y.; Pan, X. L.; Zou, X. X.; Wang, K. X.; Chen, J. S. efficient sunlight-driven dehydrogenative coupling of methane to ethane over a Zn+-modified zeolite. Angew. Chem., Int. Ed. 2011, 50, 8299-8303.

15

Li, L.; Zhou, X. S.; Li, G. D.; Pan, X. L.; Chen, J. S. Unambiguous observation of electron transfer from a zeolite framework to organic molecules. Angew. Chem., Int. Ed. 2009, 48, 6678-6682.

16

Li, X. -H.; Wang, X. C.; Antonietti, M. Mesoporous g-C3N4 nanorods as multifunctional supports of ultrafine metal nanoparticles: Hydrogen generation from water and reduction of nitrophenol with tandem catalysis in one step. Chem. Sci. 2012, 3, 2170-2174.

17

Joo, S. H.; Choi, S. J.; Oh, I.; Kwak, J.; Liu, Z.; Terasaki, O.; Ryoo, R. Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature 2001, 412, 169-172.

18

Choi, M.; Cho, H. S.; Srivastava, R.; Venkatesan, C.; Choi, D. -H.; Ryoo, R. Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity. Nat. Mater. 2006, 5, 718-723.

19

Li, X. H.; Baar, M.; Blechert, S.; Antonietti, M. Facilitating room-temperature Suzuki coupling reaction with light: Mott-Schottky photocatalyst for C-C-coupling. Sci. Rep. 2013, 3, 1743.

20

Wang, F.; Li, C. H.; Chen, H. J.; Jiang, R. B.; Sun, L. D.; Li, Q.; Wang, J. F.; Yu, J. C.; Yan, C. H. Plasmonic harvesting of light energy for Suzuki coupling reactions. J. Am. Chem. Soc. 2013, 135, 5588-5601.

21

Huang, X. Q.; Tang, S. H.; Liu, B. J.; Ren, B.; Zheng, N. F. Enhancing the photothermal stability of plasmonic metal nanoplates by a core-shell architecture. Adv. Mater. 2011, 23, 3420-3425.

22

Bai, S.; Wang, X. J.; Hu, C. Y.; Xie, M. L.; Jiang, J.; Xiong, Y. J. Two-dimensional g-C3N4: An ideal platform for examining facet selectivity of metal co-catalysts in photocatalysis. Chem. Commun. 2014, 50, 6094-6097.

23

Cui, T. L.; Li, X. H.; Lv, L. B.; Wang, K. X.; Su, J.; Chen, J. S. Nanoscale Kirkendall growth of silicalite-1 zeolite mesocrystals with controlled mesoporosity and size. Chem. Commun. 2015, 51, 12563-12566.

24

Zhang, W. P.; Ma, D.; Han, X. W.; Liu, X. M.; Bao, X. H.; Guo, X. W.; Wang, X. S. Metne dehydro-aromatization over Mo/HZSM-5 in the absence of oxygen: A multinuclear solid-state NMR study of the interaction between supported Mo species and HZSM-5 zeolite with different crystal sizes. J. Catal. 1999, 188, 393-402.

25

Hartwig, J. F. Electronic effects on reductive elimination to form carbon-carbon and carbon-heteroatom bonds from palladium(Ⅱ) complexes. Inorg. Chem. 2007, 46, 1936-1947.

26

Jover, J.; Fey, N.; Purdie, M.; Lloyd-Jones, G. C.; Harvey, J. N. A computational study of phosphine ligand effects in Suzuki-Miyaura coupling. J. Mol. Catal. A Chem. 2010, 324, 39-47.

Nano Research
Pages 874-881
Cite this article:
Ke W, Cui T, Yu Q, et al. Mesoporous H-ZSM-5 nanocrystals with programmable number of acid sites as "solid ligands" to activate Pd nanoparticles for C–C coupling reactions. Nano Research, 2018, 11(2): 874-881. https://doi.org/10.1007/s12274-017-1698-9
Metrics & Citations  
Article History
Copyright
Return