AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

50 ppm of Pd dispersed on Ni(OH)2 nanosheets catalyzing semi-hydrogenation of acetylene with high activity and selectivity

Mingzhen Hu1Jian Zhang2Wei Zhu2Zheng Chen2Xin Gao2Xianjun Du2Jiawei Wan2Kebin Zhou1( )Chen Chen2( )Yadong Li2
School of Chemistry and Chemical EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
Department of ChemistryTsinghua UniversityBeijing100084China
Show Author Information

Graphical Abstract

Abstract

We report a highly efficient Pd/Ni(OH)2 catalyst loaded with ultra-low levels of palladium (50 ppm Pd by mass) for the selective hydrogenation of acetylene to ethylene. The turnover frequency for acetylene conversion over the 0.005% Pd/Ni(OH)2 catalyst is twice that of the equivalent 0.8% Pd/Ni(OH)2 catalyst. Notably, an acetylene-to-ethylene selectivity of 80% was achieved over a wide range of temperatures. Aberration-corrected high-angle annular dark-field scanning transmission electron microscopy was used to reveal the atomically dispersed nature of palladium in the 0.005% Pd/Ni(OH)2 catalyst. The excellent selectivity of this catalyst is attributed to its atomically dispersed Pd sites, while the abundant hydroxyl groups of the support significantly enhance the acetylene conversion activity. This work opens up innovative opportunities for new types of highly efficient catalysts with trace noble-metal loadings for a wide variety of reactions.

Electronic Supplementary Material

Download File(s)
nr-11-2-905_ESM.pdf (4.5 MB)

References

1

Teschner, D.; Borsodi, J.; Wootsch, A.; Révay, Z.; Hävecker, M.; Knop-Gericke, A.; Jackson, S. D.; Schlögl, R. The roles of subsurface carbon and hydrogen in palladium-catalyzed alkyne hydrogenation. Science 2008, 320, 86-89.

2

Huang, W.; McCormick, J. R.; Lobo, R. F.; Chen, J. G. Selective hydrogenation of acetylene in the presence of ethylene on zeolite-supported bimetallic catalysts. J. Catal. 2007, 246, 40-51.

3

Borodziński, A.; Bond, G. C. Selective hydrogenation of ethyne in ethene-rich streams on palladium catalysts, part 2: Steady-state kinetics and effects of palladium particle size, carbon monoxide, and promoters. Catal. Rev. 2008, 50, 379-469.

4

Armbrüster, M.; Kovnir, K.; Friedrich, M.; Teschner, D.; Wowsnick, G.; Hahne, M.; Gille, P.; Szentmiklósi, L.; Feuerbacher, M.; Heggen, M. et al. Al13Fe4 as a low-cost alternative for palladium in heterogeneous hydrogenation. Nat. Mater. 2012, 11, 690-693.

5

Schütte, K.; Doddi, A.; Kroll, C.; Meyer, H.; Wiktor, C.; Gemel, C.; van Tendeloo, G.; Fischer, R. A.; Janiak, C. Colloidal nickel/gallium nanoalloys obtained from organometallic precursors in conventional organic solvents and in ionic liquids: Noble-metal-free alkyne semihydrogenation catalysts. Nanoscale 2014, 6, 5532-5544.

6

Studt, F.; Abild-Pedersen, F.; Bligaard, T.; Sørensen, R. Z.; Christensen, C. H.; Nørskov, J. K. Identification of non-precious metal alloy catalysts for selective hydrogenation of acetylene. Science 2008, 320, 1320-1322.

7

Liu, Y. X.; Liu, X. W.; Feng, Q. C.; He, D. S.; Zhang, L. B.; Lian, C.; Shen, R. A.; Zhao, G. F.; Ji, Y. J.; Wang, D. S. et al. Intermetallic NixMy (M = Ga and Sn) nanocrystals: A non-precious metal catalyst for semi-hydrogenation of alkynes. Adv. Mater. 2016, 28, 4747-4754.

8

Armbrüster, M.; Kovnir, K.; Behrens, M.; Teschner, D.; Grin, Y.; Schlögl, R. Pd-Ga intermetallic compounds as highly selective semihydrogenation catalysts. J. Am. Chem. Soc. 2010, 132, 14745-14747.

9

Niu, W. X.; Gao, Y. J.; Zhang, W. Q.; Yan, N.; Lu, X. M. Pd-Pb alloy nanocrystals with tailored composition for semihydrogenation: Taking advantage of catalyst poisoning. Angew. Chem., Int. Ed. 2015, 54, 8271-8274.

10

Studt, F.; Abild-Pedersen, F.; Bligaard, T.; Sørensen, R. Z.; Christensen, C. H.; Nørskov, J. K. On the role of surface modifications of palladium catalysts in the selective hydrogenation of acetylene. Angew. Chem., Int. Ed. 2008, 47, 9299-9302.

11

Kyriakou, G.; Boucher, M. B.; Jewell, A. D.; Lewis, E. A.; Lawton, T. J.; Baber, A. E.; Tierney, H. L.; Flytzani-Stephanopoulos, M.; Sykes, E. C. H. Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations. Science 2012, 335, 1209-1212.

12

Vilé, G.; Albani, D.; Nachtegaal, M.; Chen, Z. P.; Dontsova, D.; Antonietti, M.; López, N.; Pérez-Ramírez, J. A stable single-site palladium catalyst for hydrogenations. Angew. Chem., Int. Ed. 2015, 54, 11265-11269.

13

McCue, A. J.; Anderson, J. A. Recent advances in selective acetylene hydrogenation using palladium containing catalysts. Front. Chem. Sci. Eng. 2015, 9, 142-153.

14

Liu, P. X.; Zhao, Y.; Qin, R. X.; Mo, S. G.; Chen, G. X.; Gu, L.; Chevrier, D. M.; Zhang, P.; Guo, Q.; Zang, D. D. et al. Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 2016, 352, 797-800.

15

Yang, X. -F.; Wang, A. Q.; Qiao, B. T.; Li, J.; Liu, J. Y.; Zhang, T. Single-atom catalysts: A new frontier in heterogeneous catalysis. Acc. Chem. Res. 2013, 46, 1740-1748.

16

Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634-641.

17

Gao, D. W.; Zhang, X.; Yang, Y.; Dai, X. P.; Sun, H.; Qin, Y. C.; Duan, A. J. Supported single Au(Ⅲ) ion catalysts for high performance in the reactions of 1, 3-dicarbonyls with alcohols. Nano Res. 2016, 9, 985-995.

18

Long, B.; Tang, Y.; Li, J. New mechanistic pathways for CO oxidation catalyzed by single-atom catalysts: Supported and doped Au1/ThO2. Nano Res. 2016, 9, 3868-3880.

19

Liu, J. Y. Catalysis by supported single metal atoms. ACS Catal. 2017, 7, 34-59.

20

Du, H. M.; Jiao, L. F.; Cao, K. Z.; Wang, Y. J.; Yuan, H. T. Polyol-mediated synthesis of mesoporous α-Ni(OH)2 with enhanced supercapacitance. ACS Appl. Mater. Interfaces 2013, 5, 6643-6648.

21

Tüysüz, H.; Hwang, Y. J.; Khan, S. B.; Asiri, A. M.; Yang, P. D. Mesoporous Co3O4 as an electrocatalyst for water oxidation. Nano Res. 2013, 6, 47-54.

22

Yang, J.; Zhang, F. J.; Lu, H. Y.; Hong, X.; Jiang, H. L.; Wu, Y.; Li, Y. D. Hollow Zn/Co ZIF particles derived from core-shell ZIF-67@ZIF-8 as selective catalyst for the semi-hydrogenation of acetylene. Angew. Chem., Int. Ed. 2015, 54, 10889-10893.

23

Gao, M. R.; Sheng, W. C.; Zhuang, Z. B.; Fang, Q. R.; Gu, S.; Jiang, J.; Yan, Y. S. Efficient water oxidation using nanostructured α-nickel-hydroxide as an electrocatalyst. J. Am. Chem. Soc. 2014, 136, 7077-7084.

24

Yan, J.; Fan, Z. J.; Sun, W.; Ning, G. Q.; Wei, T.; Zhang, Q.; Zhang, R. F.; Zhi, L. J.; Wei, F. Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density. Adv. Funct. Mater. 2012, 22, 2632-2641.

25

Wu, J.; Ren, Z. Y.; Du, S. C.; Kong, L. J.; Liu, B. W.; Xi, W.; Zhu, J. Q.; Fu, H. G. A highly active oxygen evolution electrocatalyst: Ultrathin CoNi double hydroxide/CoO nanosheets synthesized via interface-directed assembly. Nano Res. 2016, 9, 713-725.

26

Li, R. S.; Mao, H.; Zhang, J. J.; Huang, T.; Yu, A. S. Rapid synthesis of porous Pd and PdNi catalysts using hydrogen bubble dynamic template and their enhanced catalytic performance for methanol electrooxidation. J. Power Sources 2013, 241, 660-667.

27

Demirci, U. B. Theoretical means for searching bimetallic alloys as anode electrocatalysts for direct liquid-feed fuel cells. J. Power Sources 2007, 173, 11-18.

28

Slanac, D. A.; Hardin, W. G.; Johnston, K. P.; Stevenson, K. J. Atomic ensemble and electronic effects in Ag-rich AgPd nanoalloy catalysts for oxygen reduction in alkaline media. J. Am. Chem. Soc. 2012, 134, 9812-9819.

29

Jin, Q.; He, Y. F.; Miao, M. Y.; Guan, C. Y.; Du, Y. Y.; Feng, J. T.; Li, D. Q. Highly selective and stable PdNi catalyst derived from layered double hydroxides for partial hydrogenation of acetylene. Appl. Catal. A 2015, 500, 3-11.

30

Armbrüster, M.; Wowsnick, G.; Friedrich, M.; Heggen, M.; Cardoso-Gil, R. Synthesis and catalytic properties of nanoparticulate intermetallic Ga-Pd compounds. J. Am. Chem. Soc. 2011, 133, 9112-9118.

31

Boudart, M.; Hwang, H. S. Solubility of hydrogen in small particles of palladium. J. Catal. 1975, 39, 44-52.

32

Zhou, H. R.; Yang, X. F.; Li, L.; Liu, X. Y.; Huang, Y. Q.; Pan, X. L.; Wang, A. Q.; Li, J.; Zhang, T. PdZn intermetallic nanostructure with Pd-Zn-Pd ensembles for highly active and chemoselective semi-hydrogenation of acetylene. ACS Catal. 2016, 6, 1054-1061.

33

Ishida, T.; Kinoshita, N.; Okatsu, H.; Akita, T.; Takei, T.; Haruta, M. Influence of the support and the size of gold clusters on catalytic activity for glucose oxidation. Angew. Chem., Int. Ed. 2008, 47, 9265-9268.

34

Yoon, B.; Häkkinen, H.; Landman, U.; Wörz, A. S.; Antonietti, J. -M.; Abbet, S.; Judai, K.; Heiz, U. Charging effects on bonding and catalyzed oxidation of CO on Au8 clusters on MgO. Science 2005, 307, 403-407.

35

Qian, K.; Zhang, W. H.; Sun, H. X.; Fang, J.; He, B.; Ma, Y. S.; Jiang, Z. Q.; Wei, S. Q.; Yang, J. L.; Huang, W. X. Hydroxyls-induced oxygen activation on "inert" Au nanoparticles for low-temperature CO oxidation. J. Catal. 2011, 277, 95-103.

36

Zhai, Y. P.; Pierre, D.; Si, R.; Deng, W. L.; Ferrin, P.; Nilekar, A. U.; Peng, G. W.; Herron, J. A.; Bell, D. C.; Saltsburg, H. et al. Alkali-stabilized Pt-OHx species catalyze low-temperature water-gas shift reactions. Science 2010, 329, 1633-1636.

37

Liu, Z. C.; Zhou, J.; Cao, K.; Yang, W. M.; Gao, H. X.; Wang, Y. D.; Li, H. X. Highly dispersed nickel loaded on mesoporous silica: One-spot synthesis strategy and high performance as catalysts for methane reforming with carbon dioxide. Appl. Catal. B 2012, 125, 324-330.

38

Tsoncheva, T.; Ivanova, L.; Rosenholm, J.; Linden, M. Cobalt oxide species supported on SBA-15, KIT-5 and KIT-6 mesoporous silicas for ethyl acetate total oxidation. Appl. Catal. B 2009, 89, 365-374.

Nano Research
Pages 905-912
Cite this article:
Hu M, Zhang J, Zhu W, et al. 50 ppm of Pd dispersed on Ni(OH)2 nanosheets catalyzing semi-hydrogenation of acetylene with high activity and selectivity. Nano Research, 2018, 11(2): 905-912. https://doi.org/10.1007/s12274-017-1701-5

750

Views

53

Crossref

N/A

Web of Science

49

Scopus

2

CSCD

Altmetrics

Received: 13 March 2017
Revised: 06 June 2017
Accepted: 08 June 2017
Published: 05 August 2017
© Tsinghua University Press and Springer-Verlag GmbH Germany 2017
Return