Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The emergence and establishment of new techniques for material fabrication are of fundamental importance in the development of materials science. Thus, we herein report a general synthetic strategy for the preparation of monolayer graphene. This novel synthetic method is based on the direct solid-state pyrolytic conversion of a sodium carboxylate, such as sodium gluconate or sodium citrate, into monolayer graphene in the presence of Na2CO3. In addition, gram-scale quantities of the graphene product can be readily prepared in several minutes. Analysis using Raman spectroscopy and atomic force microscopy clearly demonstrates that the pyrolytic graphene is composed of a monolayer with an average thickness of ~0.50 nm. Thus, the present pyrolytic conversion can overcome the issue of the low monolayer contents (i.e., 1 wt.%–12 wt.%) obtained using exfoliation methods in addition to the low yields of chemical vapor deposition methods. We expect that this novel technique may be suitable for application in the preparation of monolayer graphene materials for batteries, supercapacitors, catalysts, and sensors.
Wang, X.; Zhuang, J.; Peng, Q.; Li, Y. D. A general strategy for nanocrystal synthesis. Nature 2005, 437, 121–124.
Kroto, H. W.; Heath, J. R.; O'Brien, S. C.; Curl, R. F.; Smalley, R. E. C60: Buckminsterfullerene. Nature 1985, 318, 162–163.
Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58.
Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.
Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z. Y.; De, S.; McGovern, I. T.; Holland, B.; Byrne, M.; Gun'Ko, Y. K. et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotech. 2008, 3, 563–568.
Raccichini, R.; Varzi, A.; Passerini, S.; Scrosati, B. The role of graphene for electrochemical energy storage. Nat. Mater. 2015, 14, 271–279.
Yang, L. M.; Bačić, V.; Popov, I. A.; Boldyrev, A. I.; Heine, T.; Frauenheim, T.; Ganz, E. Two-dimensional Cu2Si monolayer with planar hexacoordinate copper and silicon bonding. J. Am. Chem. Soc. 2015, 137, 2757–2762.
Kawai, S.; Eren, B.; Marot, L.; Meyer, E. Graphene synthesis via thermal polymerization of aromatic quinone molecules. ACS Nano 2014, 8, 5932–5938.
Georgakilas, V.; Perman, J. A.; Tucek, J.; Zboril, R. Broad family of carbon nanoallotropes: Classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem. Rev. 2015, 115, 4744–4822.
Park, S.; Ruoff, R. S. Chemical methods for the production of graphenes. Nat. Nanotech. 2009, 4, 217–224.
Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Graphene-based composite materials. Nature 2006, 442, 282–286.
Xu, M. W.; Sun, H. T.; Shen, C.; Yang, S.; Que, W. X.; Zhang, Y.; Song, X. P. Lithium-assisted exfoliation of pristine graphite for few-layer graphene nanosheets. Nano Res. 2015, 8, 801–807.
Paton, K. R.; Varrla, E.; Backes, C.; Smith, R. J.; Khan, U.; O'Neill, A.; Boland, C.; Lotya, M.; Istrate, O. M.; King, P. et al. Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat. Mater. 2014, 13, 624–630.
Cote, L. J.; Cruz-Silva, R.; Huang, J. X. Flash reduction and patterning of graphite oxide and its polymer composite. J. Am. Chem. Soc. 2009, 131, 11027–11032.
Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y. Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558–1565.
Eda, G.; Fanchini, G.; Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotech. 2008, 3, 270–274.
Li, X. S.; Cai, W. W.; An, J.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.
Berger, C.; Song, Z. M.; Li, X. B.; Wu, X. S.; Brown, N.; Naud, C.; Mayou, D.; Li, T. B.; Hass, J.; Marchenkov, A. N. et al. Electronic confinement and coherence in patterned epitaxial graphene. Science 2006, 312, 1191–1196.
Huang, H.; Chen, W.; Chen, S.; Wee, A. T. S. Bottom-up growth of epitaxial graphene on 6H-SiC (0001). ACS Nano 2008, 2, 2513–2518.
Zhang, L. C.; Shi, Z. W.; Liu, D. H.; Yang, Rong.; Shi, D. X.; Zhang, G. Y. Vapour-phase graphene epitaxy at low temperatures. Nano Res. 2012, 5, 258–264.
Oliveira Jr, M. H.; Lopes, J. M. J.; Schumann, T.; Galves, L. A.; Ramsteiner, M.; Berlin, K.; Trampert, A.; Riechert, H. Synthesis of quasi-free-standing bilayer graphene nanoribbons on SiC surfaces. Nat. Commun. 2015, 6, 7632.
Chen, L.; Hernandez, Y.; Feng, X. L.; Müllen, K. From nanographene and graphene nanoribbons to graphene sheets: Chemical synthesis. Angew. Chem., Int. Ed. 2012, 51, 7640– 7654.
Lee, M. J.; Choi, J. S.; Kim, J. S.; Byun, I. S.; Lee, D. H.; Ryu, S.; Lee, C.; Park, B. H. Characteristics and effects of diffused water between graphene and a SiO2 substrate. Nano Res. 2012, 5, 710–717.
Li, X. H.; Kurasch, S.; Kaiser, U.; Antonietti, M. Synthesis of monolayer-patched graphene from glucose. Angew. Chem., Int. Ed. 2012, 51, 9689–9692.
Kyotani, T.; Sonobe, N.; Tomita, A. Formation of highly orientated graphite from polyacrylonitrile by using a two-dimensional space between montmorillonite lamellae. Nature 1988, 331, 331–333.
Sun, Z. Z.; Yan, Z.; Yao, J.; Beitler, E.; Zhu, Y.; Tour J. M. Growth of graphene from solid carbon sources. Nature 2010, 468, 549–552.
Wang, X. B.; Zhang, Y. J.; Zhi, C. Y.; Wang, X.; Tang, D. M.; Xu, Y. B.; Weng, Q. H.; Jiang, X. F.; Mitome, M.; Golberg, D. et al. Three-dimensional strutted graphene grown by substrate-free sugar blowing for high-power-density supercapacitors. Nat. Commun. 2013, 4, 2905.
Ferrari, A. C.; Basko, D. M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotech. 2013, 8, 235–246.
Zhu, W. J.; Low, T.; Perebeinos, V.; Bol, A. A.; Zhu, Y.; Yan, H. H.; Tersoff, J.; Avouris, P. Structure and electronic transport in graphene wrinkles. Nano Lett. 2012, 12, 3431–3436.
Dato, A.; Radmilovic, V.; Lee, Z.; Phillips, J.; Frenklach, M. Substrate-free gas-phase synthesis of graphene sheets. Nano Lett. 2008, 8, 2012–2016.
Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.
Meyer, J. C.; Geim, A. K.; Katsnelson, M. I.; Novoselov, K. S.; Booth, T. J.; Roth, S. The structure of suspended graphene sheets. Nature 2007, 446, 60–63.
Tang, Y. B.; Lee, C. S.; Chen, Z. H.; Yuan, G. D.; Kang, Z. H.; Luo, L. B.; Song, H. S.; Liu, Y.; He, Z. B.; Zhang, W. J. et al. High-quality graphenes via a facile quenching method for field-effect transistors. Nano Lett. 2009, 9, 1374–1377.
Li, D.; Müller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotech. 2008, 3, 101–105.
Zheng, S. K.; Feng, J. W.; Maciel, G. E. In situ high-temperature electron paramagnetic resonance (EPR) investigation of the charring of cellulose and cellulose/Na2CO3 mixtures and the O2-induced and H2O-induced behaviors of these chars. Energy Fuels 2005, 19, 1201–1210.
Lee, S.; Lee, K.; Zhong, Z. H. Wafer scale homogeneous bilayer graphene films by chemical vapor deposition. Nano Lett. 2010, 10, 4702–4707.
Chen, J. W.; Cui, M. Q.; Wu, G. X.; Wang, T. Y.; Mbengue, J. M.; Li, Y. F.; Li, M. C. Fast growth of large single-crystalline graphene assisted by sequential double oxygen passivation. Carbon 2017, 116, 133–138.
Li, Y. F.; Li, M. C.; Gu, T. S.; Bai, F.; Yu, Y.; Trevor, M.; Yu, Y. X. An important atomic process in the CVD growth of graphene: Sinking and up-floating of carbon atom on copper surface. Appl. Surf. Sci. 2013, 284, 207–213.
Li, Y. F.; Li, M. C.; Wang, T.; Bai, F.; Yu, Y. X. DFT study on the atomic-scale nucleation path of graphene growth on the Cu(111) surface. Phys. Chem. Chem. Phys. 2014, 16, 5213–5220.