Graphical Abstract

The intrinsic affinity of DNA molecules toward metallic ions can drive the specific formation of copper nanostructures within the nucleic acid helix structure in a sequence-dependent manner. The resultant nanostructures have interesting fluorescent and electrochemical properties, which are attractive for novel biosensing applications. However, the potential of using DNA-templated nanostructures for precision disease diagnosis remains unexplored. Particularly, DNAtemplated nanostructures show high potential for the universal amplification-free detection of different RNA biomarker species. Because of their low cellular levels and differing species-dependent length and sequence features, simultaneous detection of different messenger RNAs, microRNAs, and long non-coding RNAs species with a single technique is challenging. Here, we report a contemporary technique for facile in situ assembly of DNA-templated copper nanoblocks (CuNBs) on various RNA species targets after hybridization-based magnetic isolation. Our approach circumvents the typical limitations associated with amplification and labeling procedures of current RNA assays. The synthesized CuNBs enabled amplification-free fM-level RNA detection with flexible fluorescence or electrochemical readouts. Furthermore, our nanosensing technique displays potential for clinical application, as demonstrated by non-invasive analysis of three diagnostic RNA biomarkers from a cohort of 10 prostate cancer patient urinary samples with 100%-concordance (quantitative reverse transcriptionpolymerase chain reaction (PCR) validation). The good analytical performance and versatility of our method may be useful in both diagnostics and research fields.
Petty, J. T.; Zheng, J.; Hud, N. V.; Dickson, R. M. DNA- templated Ag nanocluster formation. J. Am. Chem. Soc. 2004, 126, 5207–5212.
Richards, C. I.; Choi, S.; Hsiang, J. C.; Antoku, Y.; Vosch, T.; Bongiorno, A.; Tzeng, Y. L.; Dickson, R. M. Oligonucleotide- stabilized Ag nanocluster fluorophores. J. Am. Chem. Soc. 2008, 130, 5038–5039.
Monson, C. F.; Woolley, A. T. DNA-templated construction of copper nanowires. Nano Lett. 2003, 3, 359–363.
Rotaru, A.; Dutta, S.; Jentzsch, E.; Gothelf, K.; Mokhir, A. Selective dsDNA-templated formation of copper nanoparticles in solution. Angew. Chem., Int. Ed. 2010, 49, 5665–5667.
Jia, X. F.; Li, J.; Han, L.; Ren, J. T.; Yang, X.; Wang, E. K. DNA-hosted copper nanoclusters for fluorescent identification of single nucleotide polymorphisms. ACS Nano 2012, 6, 3311–3317.
Qing, Z. H.; He, X. X.; He, D. G.; Wang, K. M.; Xu, F. Z.; Qing, T. P.; Yang, X. Poly(thymine)-templated selective formation of fluorescent copper nanoparticles. Angew. Chem., Int. Ed. 2013, 52, 9719–9722.
Qing, Z. H.; He, X. X.; Qing, T. P.; Wang, K. M.; Shi, H.; He, D. G.; Zou, Z.; Yan, L. A.; Xu, F. Z.; Ye, X. S.; Mao, Z. G. Poly(thymine)-templated fluorescent copper nanoparticles for ultrasensitive label-free nuclease assay and its inhibitors screening. Anal. Chem. 2013, 85, 12138–12143.
Mao, Z. G.; Qing, Z. H.; Qing, T. P.; Xu, F. Z.; Wen, L.; He, X. X.; He, D. G.; Shi, H.; Wang, K. M. Poly(thymine)- templated copper nanoparticles as a fluorescent indicator for hydrogen peroxide and oxidase-based biosensing. Anal. Chem. 2015, 87, 7454–7460.
Song, Q. W.; Shi, Y.; He, D. C.; Xu, S. H.; Ouyang, J. Sequence-dependent dsDNA-templated formation of fluorescent copper nanoparticles. Chem.—Eur. J. 2015, 21, 2417–2422.
Chen, J. Y.; Ji, X. H.; Tinnefeld, P.; He, Z. K. Multifunctional dumbbell-shaped DNA-templated selective formation of fluorescent silver nanoclusters or copper nanoparticles for sensitive detection of biomolecules. ACS Appl. Mater. Interfaces 2016, 8, 1786–1794.
Sha, L.; Zhang, X. J.; Wang, G. F. A label-free and enzyme-free ultra-sensitive transcription factors biosensor using DNA-templated copper nanoparticles as fluorescent indicator and hairpin DNA cascade reaction as signal amplifier. Biosens. Bioelectron. 2016, 82, 85–92.
Jia, X. F.; Yang, X. A.; Li, J.; Li, D. Y.; Wang, E. K. Stable Cu nanoclusters: From an aggregation-induced emission mechanism to biosensing and catalytic applications. Chem. Commun. 2014, 50, 237–239.
Brinkman, B. M. N. Splice variants as cancer biomarkers. Clin. Biochem. 2004, 37, 584–594.
Van Roosbroeck, K.; Pollet, J.; Calin, G. A. miRNAs and long noncoding RNAs as biomarkers in human diseases. Expert Rev. Mol. Diagn. 2013, 13, 183–204.
O'Leary, V. B.; Ovsepian, S. V.; Carrascosa, L. G.; Buske, F. A.; Radulovic, V.; Niyazi, M.; Moertl, S.; Trau, M.; Atkinson, M. J.; Anastasov, N. PARTICLE, a triplex-forming long ncRNA, regulates locus-specific methylation in response to low-dose irradiation. Cell Rep. 2015, 11, 474–485.
Mercer, T. R.; Dinger, M. E.; Mattick, J. S. Long non-coding RNAs: Insights into functions. Nat. Rev. Genet. 2009, 10, 155–159.
Sharp, P. A. The centrality of RNA. Cell 2009, 136, 577–580.
Riedmaier, I.; Pfaffl, M. W. Transcriptional biomarkers— High throughput screening, quantitative verification, and bioinformatical validation methods. Methods 2013, 59, 3–9.
Prensner, J. R.; Rubin, M. A.; Wei, J. T.; Chinnaiyan, A. M. Beyond PSA: The next generation of prostate cancer biomarkers. Sci. Transl. Med. 2012, 4, 127rv3.
Velonas, V. M.; Woo, H. H.; dos Remedios, C. G.; Assinder, S. J. Current status of biomarkers for prostate cancer. Int. J. Mol. Sci. 2013, 14, 11034–11060.
Fabris, L.; Ceder, Y.; Chinnaiyan, A. M.; Jenster, G. W.; Sorensen, K. D.; Tomlins, S. A.; Visakorpi, T.; Calin, G. A. The potential of microRNAs as prostate cancer biomarkers. Eur. Urol. 2016, 70, 312–322.
Rönnau, C. G. H.; Verhaegh, G. W.; Luna-Velez, M. V.; Schalken, J. A. Noncoding RNAs as novel biomarkers in prostate cancer. BioMed Res. Int. 2014, 2014, Article ID 591703.
Pellegrini, K. L.; Sanda, M. G.; Moreno, C. S. RNA biomarkers to facilitate the identification of aggressive prostate cancer. Mol. Aspects Med. 2015, 45, 37–46.
Tomlins, S. A.; Bjartell, A.; Chinnaiyan, A. M.; Jenster, G.; Nam, R. K.; Rubin, M. A.; Schalken, J. A. ETS gene fusions in prostate cancer: From discovery to daily clinical practice. Eur. Urol. 2009, 56, 275–286.
Tomlins, S. A.; Rhodes, D. R.; Perner, S.; Dhanasekaran, S. M.; Mehra, R.; Sun, X. W.; Varambally, S.; Cao, X. H.; Tchinda, J.; Kuefer, R. et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 2005, 310, 644–648.
Martello, G.; Rosato, A.; Ferrari, F.; Manfrin, A.; Cordenonsi, M.; Dupont, S.; Enzo, E.; Guzzardo, V.; Rondina, M.; Spruce, T. et al. A microRNA targeting dicer for metastasis control. Cell 2010, 141, 1195–1207.
Wang, W. -X.; Kyprianou, N.; Wang, X. W.; Nelson, P. T. Dysregulation of the mitogen granulin in human cancer through the miR-15/107 microRNA gene group. Cancer Res. 2010, 70, 9137–9142.
Chen, P. -S.; Su, J. -L.; Cha, S. -T.; Tarn, W. -Y.; Wang, M. -Y.; Hsu, H. -C.; Lin, M. -T.; Chu, C. -Y.; Hua, K. -T.; Chen, C. -N. et al. miR-107 promotes tumor progression by targeting the let-7 microRNA in mice and humans. J. Clin. Investig. 2011, 121, 3442–3455.
Prensner, J. R.; Iyer, M. K.; Sahu, A.; Asangani, I. A.; Cao, Q.; Patel, L.; Vergara, I. A.; Davicioni, E.; Erho, N.; Ghadessi, M. et al. The long noncoding RNA SChLAP1 promotes aggressive prostate cancer and antagonizes the SWI/SNF complex. Nat. Genet. 2013, 45, 1392–1398.
Hessels, D.; Smit, F. P.; Verhaegh, G. W.; Witjes, J. A.; Cornel, E. B.; Schalken, J. A. Detection of TMPRSS2-ERG fusion transcripts and prostate cancer antigen 3 in urinary sediments may improve diagnosis of prostate cancer. Clin. Cancer Res. 2007, 13, 5103–5108.
Bryant, R. J.; Pawlowski, T.; Catto, J. W. F.; Marsden, G.; Vessella, R. L.; Rhees, B.; Kuslich, C.; Visakorpi, T.; Hamdy, F. C. Changes in circulating microRNA levels associated with prostate cancer. Br. J. Cancer 2012, 106, 768–774.
Bustin, S. A. Absolute quantification of mRNA using real- time reverse transcription polymerase chain reaction assays. J. Mol. Endocrinol. 2000, 25, 169–193.
Chen, C. F.; Ridzon, D. A.; Broomer, A. J.; Zhou, Z. H.; Lee, D. H.; Nguyen, J. T.; Barbisin, M.; Xu, N. L.; Mahuvakar, V. R.; Andersen, M. R. et al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res. 2005, 33, e179.
Koo, K. M.; Carrascosa, L. G.; Shiddiky, M. J. A.; Trau, M. Poly(A) extensions of miRNAs for amplification-free electrochemical detection on screen-printed gold electrodes. Anal. Chem. 2016, 88, 2000–2005.
Koo, K. M.; Carrascosa, L. G.; Shiddiky, M. J. A.; Trau, M. Amplification-free detection of gene fusions in prostate cancer urinary samples using mRNA-gold affinity interactions. Anal. Chem. 2016, 88, 6781–6788.
Xu, F. Z.; Shi, H.; He, X. X.; Wang, K. M.; He, D. G.; Guo, Q. P.; Qing, Z. H.; Yan, L. A.; Ye, X. S.; Li, D. et al. Concatemeric dsDNA-templated copper nanoparticles strategy with improved sensitivity and stability based on rolling circle replication and its application in microRNA detection. Anal. Chem. 2014, 86, 6976–6982.
Wang, Z. Y.; Si, L.; Bao, J. C.; Dai, Z. H. A reusable microRNA sensor based on the electrocatalytic property of heteroduplex-templated copper nanoclusters. Chem. Commun. 2015, 51, 6305–6307.
Bakker, E.; Qin, Y. Electrochemical sensors. Anal. Chem. 2006, 78, 3965–3984.
Das, J.; Ivanov, I.; Montermini, L.; Rak, J.; Sargent, E. H.; Kelley, S. O. An electrochemical clamp assay for direct, rapid analysis of circulating nucleic acids in serum. Nat. Chem. 2015, 7, 569–575.
Gliddon, H. D.; Howes, P. D.; Kaforou, M.; Levin, M.; Stevens, M. M. A nucleic acid strand displacement system for the multiplexed detection of tuberculosis-specific mRNA using quantum dots. Nanoscale 2016, 8, 10087–10095.
Zhang, P. B.; Zhang, J. Y.; Wang, C. L.; Liu, C. H.; Wang, H.; Li, Z. P. Highly sensitive and specific multiplexed microRNA quantification using size-coded ligation chain reaction. Anal. Chem. 2014, 86, 1076–1082.
Kaffenberger, S. D.; Barbieri, C. E. Molecular subtyping of prostate cancer. Curr. Opi. Urol. 2016, 26, 213–218.
Koo, K. M.; Wee, E. J. H.; Mainwaring, P. N.; Wang, Y. L.; Trau, M. Toward precision medicine: A cancer molecular subtyping nano‐strategy for RNA biomarkers in tumor and urine. Small 2016, 12, 6233–6242.