AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Uniform and reproducible plasmon-enhanced fluorescence substrate based on PMMA-coated, large-area Au@Ag nanorod arrays

Jun Sun1,§Ziyang Li1,§Yinghui Sun2,3,§Liubiao Zhong1Jing Huang1Junchang Zhang1Zhiqiang Liang1Jianmei Chen1Lin Jiang1( )
Institute of Functional Nano & Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon-Based Functional Materials & DevicesSoochow UniversitySuzhou215123China
Soochow Institute for Energy and Materials InnovationSCollege of PhysicsOptoelectronics and EnergyInstitute of Chemical Power Sources & Collaborative Innovation Center of Suzhou Nano Science and TechnologySoochow UniversitySuzhou215006China
Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy TechnologiesSoochow UniversitySuzhou215006China

§ Jun Sun, Ziyang Li and Yinghui Sun contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Here we describe a plasmon-enhanced fluorescence substrate based on poly(methyl methacrylate) (PMMA)-coated, large-area Au@Ag nanorod arrays. The use of a PMMA medium enables precise control of the competition between enhancing and quenching processes as a function of the distance between Au@Ag nanorods and dye molecules. At the optimal PMMA layer thickness of 56 nm (for which the distance between nanoparticles and dye molecules is 16 nm), a maximum enhancement of fluorescence of up to ~ 27 times is measured. The competition mechanism between enhancing and quenching processes depends on the thickness of the PMMA layer, which has been confirmed by consistent experimental and theoretical modeling results. Notably, the micropatterned metal-enhanced fluorescence (MEF) substrate exhibits high uniformity and reproducibility. The simple spin-coating process described herein provides an attractive, scalable, and low-cost strategy to produce uniform and reproducible large-area MEF substrates that can potentially be used in many fields, such as biochips, diagnostics, and photonics.

Electronic Supplementary Material

Download File(s)
nr-11-2-953_ESM.pdf (5.9 MB)

References

1

Zhu, S. J.; Zhang, J. H.; Tang, S. J.; Qiao, C. Y.; Wang, L.; Wang, H. Y.; Liu, X.; Li, B.; Li, Y. F.; Yu, W. L. et al. Surface chemistry routes to modulate the photoluminescence of graphene quantum dots: From fluorescence mechanism to up-conversion bioimaging applications. Adv. Funct. Mater. 2012, 22, 4732-4740.

2

Itoh, T. Correction to fluorescence and phosphorescence from higher excited states of organic molecules. Chem. Rev. 2014, 114, 6080.

3

Chen, H. Y.; Zhao, J.; Zhang, M.; Yang, H. B.; Ma, Y. X.; Gu, Y. Q. Muc1 aptamer-based near-infrared fluorescence probes for tumor imaging. Mol. Imaging Biol. 2015, 17, 38-48.

4

Dziuba, D.; Jurkiewicz, P.; Cebecauer, M.; Hof, M.; Hocek, M. A rotational bodipy nucleotide: An environment- sensitive fluorescence-lifetime probe for DNA interactions and applications in live-cell microscopy. Angew. Chem., Int. Ed. 2016, 128, 182-186.

5

Hussain, T.; Zhong, L. B.; Danesh, M.; Ye, H. Q.; Liang, Z. Q.; Xiao, D.; Qiu, C. -W.; Lou, C. G.; Chi, L. F.; Jiang, L. Enabling low amounts of YAG: Ce3+ to convert blue into white light with plasmonic Au nanoparticles. Nanoscale 2015, 7, 10350-10356.

6

Lu, L.; Qian, Y. X.; Wang, L. H.; Ma, K. K.; Zhang, Y. D. Metal-enhanced fluorescence-based core-shell Ag@SiO2 nanoflares for affinity biosensing via target-induced structure switching of aptamer. ACS Appl. Mater. Interfaces 2014, 6, 1944-1950.

7

Fan, L. R.; Sun, X. K.; Xiong, C.; Schuck, C.; Tang, H. X. Aluminum nitride piezo-acousto-photonic crystal nanocavity with high quality factors. Appl. Phys. Lett. 2013, 102, 153507.

8

Lu, C. -Y.; Browne, D. E.; Yang, T.; Pan, J. -W. Demonstration of a compiled version of shor's quantum factoring algorithm using photonic qubits. Phy. Rew. Lett. 2007, 99, 250504.

9

Cubeddu, R.; Comelli, D.; D'Andrea, C.; Taroni, P.; Valentini, G. Time-resolved fluorescence imaging in biology and medicine. J. Phys. D: Appl. Phys. 2002, 35, R61.

10

Geddes, C. D.; Cao, H. S.; Gryczynski, I.; Gryczynski, Z.; Fang, J. Y.; Lakowicz, J. R. Metal-enhanced fluorescence (MEF) due to silver colloids on a planar surface:  Potential applications of indocyanine green to in vivo imaging. J. Phys. Chem. A 2003, 107, 3443-3449.

11

Ming, T.; Chen, H. J.; Jiang, R. B.; Li, Q.; Wang, J. F. Plasmon-controlled fluorescence: Beyond the intensity enhancement. J. Phys. Chem. Lett. 2012, 3, 191-202.

12

Isaacs, S.; Abdulhalim, I. Long range surface plasmon resonance with ultra-high penetration depth for self-referenced sensing and ultra-low detection limit using diverging beam approach. Appl. Phys. Lett. 2015, 106, 193701.

13

Jiang, L.; Guan, J.; Zhao, L. L.; Li, J.; Yang, W. S. pH- dependent aggregation of citrate-capped Au nanoparticles induced by Cu2+ ions: The competition effect of hydroxyl groups with the carboxyl groups. Colloids Surf. A 2009, 346, 216-220.

14

Sun, Y. G.; Xia, Y. N. Shape-controlled synthesis of gold and silver nanoparticles. Science 2002, 298, 2176-2179.

15

Albanese, A.; Tang, P. S.; Chan, W. C. W. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng. 2012, 14, 1-16.

16

Bardhan, R.; Grady, N. K.; Cole, J. R.; Joshi, A.; Halas, N. J. Fluorescence enhancement by Au nanostructures: Nanoshells and nanorods. ACS Nano 2009, 3, 744-752.

17

Jain, P. K.; Lee, K. S.; El-Sayed, I. H.; El-Sayed, M. A. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine. J. Phys. Chem. B 2006, 110, 7238-7248.

18

Pompa, P. P.; Martiradonna, L.; Torre, A. D.; Sala, F. D.; Manna, L.; De Vittorio, M.; Calabi, F.; Cingolani, R.; Rinaldi, R. Erratum: Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control. Nat. Nanotechnol. 2014, 9, 723.

19

Aslan, K.; Leonenko, Z.; Lakowicz, J. R.; Geddes, C. D. Fast and slow deposition of silver nanorods on planar surfaces: Application to metal-enhanced fluorescence. J. Phys. Chem. B 2005, 109, 3157-3162.

20

Wan, A.; Wang, T.; Yin, T. T.; Li, A. R.; Hu, H. L.; Li, S. Z.; Shen, Z. X.; Nijhuis, C. A. Plasmon-modulated photoluminescence of single gold nanobeams. ACS Photonics 2015, 2, 1348-1354.

21

Gabudean, A. M.; Focsan, M.; Astilean, S. Gold nanorods performing as dual-modal nanoprobes via metal-enhanced fluorescence (MEF) and surface-enhanced raman scattering (SERS). J. Phys. Chem. C 2012, 116, 12240-12249.

22

Jiang, L.; Chen, X. D.; Lu, N.; Chi, L. F. Spatially confined assembly of nanoparticles. Acc. Chem. Res. 2014, 47, 3009-3017.

23

Jiang, L.; Sun, Y. H.; Huo, F. W.; Zhang, H.; Qin, L. D.; Li, S. Z.; Chen, X. D. Free-standing one-dimensional plasmonic nanostructures. Nanoscale 2012, 4, 66-75.

24

Yang, B. J.; Lu, N.; Qi, D. P.; Ma, R. P.; Wu, Q.; Hao, J. Y.; Liu, X. M.; Mu, Y.; Reboud, V.; Kehagias, N. et al. Tuning the intensity of metal-enhanced fluorescence by engineering silver nanoparticle arrays. Small 2010, 6, 1038-1043.

25

Yuan, H. F.; Khatua, S.; Zijlstra, P.; Yorulmaz, M.; Orrit, M. Thousand-fold enhancement of single-molecule fluorescence near a single gold nanorod. Angew. Chem., Int. Ed. 2013, 52, 1217-1221.

26

Khatua, S.; Paulo, P. M. R.; Yuan, H. F.; Gupta, A.; Zijlstra, P.; Orrit, M. Resonant plasmonic enhancement of single-molecule fluorescence by individual gold nanorods. ACS Nano 2014, 8, 4440-4449.

27

Pompa, P. P.; Martiradonna, L.; Torre, A. D.; Sala, F. D.; Manna, L.; De Vittorio, M.; Calabi, F.; Cingolani, R.; Rinaldi, R. Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control. Nat. Nanotechnol. 2006, 1, 126-130.

28

Lee, D. E.; Je, N. J.; Yoo, S. I.; Lee, D. H. Directed self-assembly of block copolymer micelles onto topographically patterned surface. Langmuir 2015, 31, 12929-12936.

29

Niu, L. F.; Zhang, N.; Liu, H.; Zhou, X. D.; Knoll, W. Integrating plasmonic diagnostics and microfluidics. Biomicrofluidics 2015, 9, 052611.

30

Huang, C. Z.; Wu, M. J.; Chen, S. Y. High order gap modes of film-coupled nanospheres. J. Phys. Chem. C 2015, 119, 13799-13806.

31

Cho, Y. J.; Yook, K. S.; Lee, J. Y. High efficiency in a solution-processed thermally activated delayed-fluorescence device using a delayed-fluorescence emitting material with improved solubility. Adv. Mater. 2014, 26, 6642-6646.

32

Chen, C. W.; Kang, H. W.; Hsiao, S. Y.; Yang, P. F.; Chiang, K. M.; Lin, H. W. Efficient and uniform planar-type perovskite solar cells by simple sequential vacuum deposition. Adv. Mater. 2014, 26, 6647-6652.

33

Cadusch, J. J.; Panchenko, E.; Kirkwood, N.; James, T. D.; Gibson, B. C.; Webb, K. J.; Mulvaney, P.; Roberts, A. Emission enhancement and polarization of semiconductor quantum dots with nanoimprinted plasmonic cavities: Towards scalable fabrication of plasmon-exciton displays. Nanoscale 2015, 7, 13816-13821.

34

Zhang, W. H.; Ding, F.; Li, W. D.; Wang, Y. X.; Hu, J.; Chou, S. Y. Giant and uniform fluorescence enhancement over large areas using plasmonic nanodots in 3D resonant cavity nanoantenna by nanoimprinting. Nanotechnology 2012, 23, 225301.

35

Dragan, A. I.; Bishop, E. S.; Casas-Finet, J. R.; Strouse, R. J.; McGivney, J.; Schenerman, M. A.; Geddes, C. D. Distance dependence of metal-enhanced fluorescence. Plasmonics 2012, 7, 739-744.

36

Kedem, O.; Wohlleben, W.; Rubinstein, I. Distance-dependent fluorescence of tris (bipyridine) ruthenium(Ⅱ) on supported plasmonic gold nanoparticle ensembles. Nanoscale 2014, 6, 15134-15143.

37

Zhou, Z. P.; Huang, H. D.; Chen, Y.; Liu, F.; Huang, C. Z.; Li, N. A distance-dependent metal-enhanced fluorescence sensing platform based on molecular beacon design. Biosens. Bioelectron. 2014, 52, 367-373.

38

Wu, L.; Zhou, X. D.; Bai, P. Plasmonic metals for nanohole-array surface plasmon field-enhanced fluorescence spectroscopy biosensing. Plasmonics 2014, 9, 825-833.

39

Reineck, P.; Gómez, D.; Ng, S. H.; Karg, M.; Bell, T.; Mulvaney, P.; Bach, U. Distance and wavelength dependent quenching of molecular fluorescence by Au@SiO2 core-shell nanoparticles. ACS Nano 2013, 7, 6636-6648.

40

Abadeer, N. S.; Brennan, M. R.; Wilson, W. L.; Murphy, C. J. Distance and plasmon wavelength dependent fluorescence of molecules bound to silica-coated gold nanorods. ACS Nano 2014, 8, 8392-8406.

41

Merkl, J. P.; Wolter, C.; Flessau, S.; Schmidtke, C.; Ostermann, J.; Feld, A.; Mews, A.; Weller, H. Investigations of ion transport through nanoscale polymer membranes by fluorescence quenching of CdSe/CdS quantum dot/quantum rods. Nanoscale 2016, 8, 7402-7407.

42

Xie, F.; Pang, J. S.; Centeno, A.; Ryan, M. P.; Riley, D. J.; Alford, N. M. Nanoscale control of Ag nanostructures for plasmonic fluorescence enhancement of near-infrared dyes. Nano Res. 2013, 6, 496-510.

43

Singh, M. P.; Strouse, G. F. Involvement of the LSPR spectral overlap for energy transfer between a dye and Au nanoparticle. J. Am. Chem. Soc. 2010, 132, 9383-9391.

44

Jiang, L.; Zhang, H. X.; Zhuang, J. Q.; Yang, B. Q.; Yang, W. S.; Li, T. J.; Sun, C. C. Sterically mediated two- dimensional architectures in aggregates of Au nanoparticles directed by phosphorothioate oligonucleotide-DNA. Adv. Mater. 2005, 17, 2066-2070.

45

Liu, Y.; Wu, P. Y. Meditating metal coenhanced fluorescence and SERS around gold nanoaggregates in nanosphere as bifunctional biosensor for multiple DNA targets. ACS Appl. Mater. Interfaces 2013, 5, 5832-5844.

46

Fu, B.; Flynn, J. D.; Isaacoff, B. P.; Rowland, D. J.; Biteen, J. S. Super-resolving the distance-dependent plasmon- enhanced fluorescence of single dye and fluorescent protein molecules. J. Phys. Chem. C 2015, 119, 19350-19358.

47

Kim, K.; Lee, Y. M.; Lee, H. B.; Shin, K. S. Silver-coated silica beads applicable as core materials of dual-tagging sensors operating via SERS and MEF. ACS Appl. Mater. Interfaces 2009, 1, 2174-2180.

48

Lu, Z. Y.; Xu, J. Q.; Han, Y. D.; Song, Z. Q.; Li, J.; Yang, W. S. Robust fluorescein-doped silica nanoparticles via dense-liquid treatment. Colloids Surf. A 2007, 303, 207-210.

49

Tam, F.; Goodrich, G. P.; Johnson, B. R.; Halas, N. J. Plasmonic enhancement of molecular fluorescence. Nano Lett. 2007, 7, 496-501.

50

Luo, Q.; Chen, Y. R.; Li, Z. Q.; Zhu, F.; Chen, X. H.; Sun, Z.; Wei, Y. L.; Guo, H.; Wang, Z. B.; Huang, S. M. Large enhancements of NAYF4: Yb/Er/Gd nanorod upconversion emissions via coupling with localized surface plasmon of Au film. Nanotechnology 2014, 25, 185401.

51

Saboktakin, M.; Ye, X. C.; Oh, S. J.; Hong, S. H.; Fafarman, A. T.; Chettiar, U. K.; Engheta, N.; Murray, C. B.; Kagan, C. R. Metal-enhanced upconversion luminescence tunable through metal nanoparticle-nanophosphor separation. ACS Nano 2012, 6, 8758-8766.

52

Chen, J.; Jin, Y. H.; Fahruddin, N.; Zhao, J. X. Development of gold nanoparticle-enhanced fluorescent nanocomposites. Langmuir 2013, 29, 1584-1591.

53

Driever, C. D.; Mulet, X.; Waddington, L. J.; Postma, A.; Thissen, H.; Caruso, F.; Drummond, C. J. Layer-by-layer polymer coating on discrete particles of cubic lyotropic liquid crystalline dispersions (cubosomes). Langmuir 2013, 29, 12891-12900.

54

Gandra, N.; Portz, C.; Tian, L. M.; Tang, R.; Xu, B. G.; Achilefu, S.; Singamaneni, S. Probing distance-dependent plasmon-enhanced near-infrared fluorescence using polyelectrolyte multilayers as dielectric spacers. Angew. Chem., Int. Ed. 2014, 53, 866-870.

55

Feng, A. L.; You, M. L.; Tian, L. M.; Singamaneni, S.; Liu, M.; Duan, Z. F.; Lu, T. J.; Xu, F.; Lin, M. Distance- dependent plasmon-enhanced fluorescence of upconversion nanoparticles using polyelectrolyte multilayers as tunable spacers. Sci. Rep. 2015, 5, 7779.

56

Hwang, E.; Smolyaninov, I. I.; Davis, C. C. Surface plasmon polariton enhanced fluorescence from quantum dots on nanostructured metal surfaces. Nano Lett. 2010, 10, 813-820.

57

Song, J. H.; Atay, T.; Shi, S. F.; Urabe, H.; Nurmikko, A. V. Large enhancement of fluorescence efficiency from CdSe/ZnS quantum dots induced by resonant coupling to spatially controlled surface plasmons. Nano Lett. 2005, 5, 1557-1561.

58

Lohse, S. E.; Murphy, C. J. The quest for shape control: A history of gold nanorod synthesis. Chem. Mater. 2013, 25, 1250-1261.

59

Zhou, N.; Ye, C.; Polavarapu, L.; Xu, Q. H. Controlled preparation of Au/Ag/SnO2 core-shell nanoparticles using a photochemical method and applications in LSPR based sensing. Nanoscale 2015, 7, 9025-9032.

60

Sun, L.; Li, Q. H.; Tang, W. J.; Di, J. W.; Wu, Y. The use of gold-silver core-shell nanorods self-assembled on a glass substrate can substantially improve the performance of plasmonic affinity biosensors. Microchim. Acta 2014, 181, 1991-1997.

61

Persano, L.; Cingolani, R.; Pisignano, D. Monolithic organic-oxide microcavities fabricated by low-temperature electron-beam evaporation. J. Vac. Sci. Technol. B 2005, 23, 1654-1658.

62

Jakab, A.; Rosman, C.; Khalavka, Y.; Becker, J.; Trügler, A.; Hohenester, U.; Sönnichsen, C. Highly sensitive plasmonic silver nanorods. ACS Nano 2011, 5, 6880-6885.

63

Jiang, R. B.; Chen, H. J.; Shao, L.; Li, Q.; Wang, J. F. Unraveling the evolution and nature of the plasmons in (Au core)-(Ag shell) nanorods. Adv. Mater. 2012, 24, OP200-OP207.

64

Lee, Y. H.; Chen, H. J.; Xu, Q. H.; Wang, J. F. Refractive index sensitivities of noble metal nanocrystals: The effects of multipolar plasmon resonances and the metal type. J. Phys. Chem. C 2011, 115, 7997-8004.

65

Lu, G. W.; Zhang, T. Y.; Li, W. Q.; Hou, L.; Liu, J.; Gong, Q. H. Single-molecule spontaneous emission in the vicinity of an individual gold nanorod. J. Phys. Chem. C 2011, 115, 15822-15828.

66

Mohammadi, A.; Sandoghdar, V.; Agio, M. Gold nanorods and nanospheroids for enhancing spontaneous emission. New J. Phys. 2008, 10, 105015.

67

Vial, S.; Pastoriza-Santos, I.; Pérez-Juste, J.; Liz-Marzán, L. M. Plasmon coupling in layer-by-layer assembled gold nanorod films. Langmuir 2007, 23, 4606-4611.

68

Bharadwaj, P.; Deutsch, B.; Novotny, L. Optical antennas. Adv. Opt. Photon. 2009, 1, 438-483.

Nano Research
Pages 953-965
Cite this article:
Sun J, Li Z, Sun Y, et al. Uniform and reproducible plasmon-enhanced fluorescence substrate based on PMMA-coated, large-area Au@Ag nanorod arrays. Nano Research, 2018, 11(2): 953-965. https://doi.org/10.1007/s12274-017-1708-y

697

Views

44

Crossref

N/A

Web of Science

46

Scopus

3

CSCD

Altmetrics

Received: 22 January 2017
Revised: 04 June 2017
Accepted: 11 June 2017
Published: 29 July 2017
© Tsinghua University Press and Springer-Verlag GmbH Germany 2017
Return