Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
References
Show full outline
Hide outline
Research Article

Oxidation layering mechanism of graphene-like MoS2 prepared by the intercalation-detonation method

Fan Yang1,2Kuaishe Wang1,2Ping Hu1,2,3()Zhenyu Chen1,2Jie Deng1,2Boliang Hu1,2Weicheng Cao3Dongxin Liu3Geng An3Alex A. Volinsky4
School of Metallurgy EngineeringXi'an University of Architecture and TechnologyXi'an710055China
State Local Joint Engineering Research Center for Functional Materials ProcessingXi'an University of Architecture and TechnologyXi'an710055China
Jinduicheng Molybdenum Co., Ltd.Xi'an710077China
Department of Mechanical EngineeringUniversity of South Florida Tampa, FL33620USA
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

Graphene-like MoS2 has attracted significant interest because of its unique electronic, optical, and catalytic properties with two-dimensional lamellar structure. Three kinds of intercalated MoS2 samples were prepared using different oxidation layering methods, which are the first steps of intercalation-detonation. The oxidation layering mechanism of graphene-like MoS2 was systematically characterized using Fourier transform infrared, X-ray photoelectron, and Raman spectroscopy techniques. The bulk MoS2 sample was gradually oxidized from the edge to the interlayer in the presence of concentrated H2SO4 and KMnO4. A large number of hydroxyl groups were bonded to the sulfur atom layer, forming S–OH bonds in the basal planes of the MoS2 structure. The addition of deionized water to concentrated H2SO4 generated a large amount of heat, promoting the generation of more S–OH bonds, destroying residual Van der Waals forces between the layers, and finally stripping off parts of the flakes. The continuous addition of deionized water in the high temperature stage resulted in the largest oxidative intercalation effect. Additionally, the η factor was determined to compare the intensities of B1u and A1g peaks in the Raman spectra and quantify the effect of oxidative intercalation. The highest value of η was obtained when deionized water was added continuously during the preparation of intercalated MoS2.

References

1

Coleman, J. N.; Lotya, M.; O'Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J. et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 2011, 331, 568-571.

2

Macmahon, D.; Brothers, A.; Florent, K.; Kurinec, S. Layered structure of MoS2 investigated using electron energy loss spectroscopy. Mater. Lett. 2015, 161, 96-99.

3

Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147-150.

4

Li, X.; Li, J. H.; Wang, X. H.; Hu, J. X.; Fang, X.; Chu, X. Y.; Wei, Z. P.; Shan, J. J.; Ding, X. C. Preparation, applications of two-dimensional graphene-like molybdenum disulfide. Integr. Ferroelectr. 2014, 158, 26-42.

5

Huang, Y.; Wu, J.; Xu, X. F.; Ho, Y.; Ni, G. X.; Zou, Q.; Koon, G. K. W.; Zhao, W. J.; Neto, A. H. C.; Eda, G. et al. An innovative way of etching MoS2: Characterization and mechanistic investigation. Nano Res. 2013, 6, 200-207.

6

Zhan, Y. J.; Liu, Z.; Najmaei, S.; Ajayan, P. M.; Lou, J. Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small 2012, 8, 966-971.

7

Dolui, K.; Rungger, I.; Das Pemmaraju, C.; Sanvito, S. Possible doping strategies for MoS2 monolayers: An ab initio study. Phys. Rev. B 2013, 88, 075420.

8

Yoon, Y.; Ganapathi, K.; Salahuddin, S. How good can monolayer MoS2 transistors Be? Nano Lett. 2011, 11, 3768-3773.

9

Joensen, P.; Frindt, R. F.; Morrison, S. R. Single-layer MoS2. Mater. Res. Bull. 1986, 21, 457-461.

10

Liu, K. K.; Zhang, W. J.; Lee, Y. H.; Lin, Y. C.; Chang, M. T.; Su, C. Y.; Chang, C. S.; Li, H.; Shi, Y. M.; Zhang, H. et al. Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett. 2012, 12, 1538-1544.

11

Luo, H.; Xu, C.; Zou, D. B.; Wang, L.; Ying, T. K. Hydrothermal synthesis of hollow MoS2 microspheres in ionic liquids/water binary emulsions. Mater. Lett. 2008, 62, 3558-3560.

12

Pol, V. G.; Pol, S. V.; George, P. P.; Gedanken, A. Combining MoS2 or MoSe2 nanoflakes with carbon by reacting Mo(CO)6 with S or Se under their autogenic pressure at elevated temperature. J. Mater. Sci. 2008, 43, 1966-1973.

13

Chen, J. M.; Wang, C. S. Second order Raman spectrum of MoS2. Solid State Commun. 1974, 14, 857-860.

14

Bertrand, P. A. Surface-phonon dispersion of MoS2. Phys. Rev. B1991, 44, 5745-5749.

15

Lee, C.; Yan, H. G.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 2010, 4, 2695-2700.

16

Li, H.; Zhang, Q.; Yap, C. C. R.; Tay, B. K.; Edwin, T. H. T.; Olivier, A.; Baillargeat, D. From bulk to monolayer MoS2: Evolution of Raman scattering. Adv. Funct. Mater. 2012, 22, 1385-1390.

17

Sekine, T.; Uchinokura, K.; Nakashizu, T.; Matsuura, E.; Yoshizaki, R. Dispersive Raman mode of layered compound 2H-MoS2 under the resonant condition. J. Phys. Soc. Jpn. 1984, 53, 811-818.

18

Yang, F.; Hu, P.; Wang, K. S.; Chen, Z. Y.; Hu, B. L.; Song, R.; Li, Q. W.; Cao, W. C.; Liu, D. X.; An, G. et al. Graphene-like MoS2 prepared by a novel intercalation- detonation method. Mater. Lett. 2017, 188, 224-227.

19

Wang, P. P.; Sun, H. Y.; Ji, Y. J.; Li, W. H.; Wang, X. Three-dimensional assembly of single-layered MoS2. Adv. Mater. 2014, 26, 964-969.

20

Zhang, Y.; Chen, P.; Wen, F. F.; Yuan, B.; Wang, H. G. Fe3O4 nanospheres on MoS2nanoflake: Electrocatalysis and detection of Cr(VI) and nitrite. J. Electroanal. Chem. 2016, 761, 14-20.

Nano Research
Pages 997-1003
Cite this article:
Yang F, Wang K, Hu P, et al. Oxidation layering mechanism of graphene-like MoS2 prepared by the intercalation-detonation method. Nano Research, 2018, 11(2): 997-1003. https://doi.org/10.1007/s12274-017-1713-1
Metrics & Citations  
Article History
Copyright
Return