AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Vapor-phase hydrothermal growth of single crystalline NiS2 nanostructure film on carbon fiber cloth for electrocatalytic oxidation of alcohols to ketones and simultaneous H2 evolution

Tianxing Wu1Xiaoguang Zhu1Guozhong Wang1( )Yunxia Zhang1Haimin Zhang1( )Huijun Zhao1,2
Key Laboratory of Materials PhysicsCentre for Environmental and Energy NanomaterialsAnhui Key Laboratory of Nanomaterials and NanotechnologyCAS Center for Excellence in NanoscienceInstitute of Solid State PhysicsChinese Academy of SciencesHefei230031China
Centre for Clean Environment and EnergyGriffith UniversityGold Coast CampusNathanQueensland4222Australia
Show Author Information

Graphical Abstract

Abstract

Electrocatalytic synthesis of value-added chemicals is attracting significant research attention owing to its mild reaction conditions, environmental benignity, and potentially scalable application to organic synthetic chemistry. Herein, we report the preparation of a single-crystalline NiS2 nanostructure film of ~ 50 nm thickness grown directly on a carbon fiber cloth (NiS2/CFC) by a facile vapor-phase hydrothermal (VPH) method. NiS2/CFC as an electrocatalyst exhibits activity for both the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER) in alkaline media. Furthermore, a series of alcohols (2-propanol, 2-butanol, 2-pentanol, and cyclohexanol) were electrocatalytically converted to the corresponding ketones with high selectivity, efficiency, and durability using the NiS2/CFC electrode in alkaline media. In the presence of 0.45 M alcohol, a remarkably decreased overpotential (~ 150 mV, vs. RHE) at the NiS2/CFC anode compared with that for water oxidation to generate O2, i.e., the OER, in alkaline media leads to significantly improved H2 generation. For instance, the H2 generation rate in the presence of 0.45 M 2-propanol is almost 1.2-times of that obtained for pure water splitting, but in a system that employs an applied voltage at least 280 mV lower than that required for water splitting to achieve the same current density (20 mA·cm–2). Thus, our results demonstrate the applicability of our bifunctional non-precious-metal electrocatalyst for organic synthesis and simultaneous H2 production.

Electronic Supplementary Material

Download File(s)
nr-11-2-1004_ESM.pdf (2.1 MB)

References

1

Dijksman, A.; Marino-González, A.; Payeras, A. M. I.; Arends, I. W. C. E.; Sheldon, R. A. Efficient and selective aerobic oxidation of alcohols into aldehydes and ketones using ruthenium/TEMPO as the catalytic system. J. Am. Chem. Soc. 2001, 123, 6826-6833.

2

Sheldon, R. A.; Arends, I. W. C. E.; Ten Brink, G. J.; Dijksman, A. Green, catalytic oxidations of alcohols. Acc. Chem. Res. 2002, 35, 774-781.

3

Punniyamurthy, T.; Velusamy, S.; Iqbal, J. Recent advances in transition metal catalyzed oxidation of organic substrates with molecular oxygen. Chem. Rev. 2005, 105, 2329-2364.

4

Jiang, N.; You, B.; Boonstra, R.; Rodriguez, I. M. T.; Sun, Y. J. Integrating electrocatalytic 5-hydroxymethylfurfural oxidation and hydrogen production via Co-P-derived electrocatalysts. ACS Energy Lett. 2016, 1, 386-390.

5

Kwon, Y.; Schouten, K. J. P.; van der Waal, J. C.; de Jong, E.; Koper, M. T. M. Electrocatalytic conversion of furanic compounds. ACS Catal. 2016, 6, 6704-6717.

6

Roylance, J. J.; Choi, K. S. Electrochemical reductive amination of furfural-based biomass intermediates. Green Chem. 2016, 18, 5412-5417.

7

Roylance, J. J.; Choi, K. S. Electrochemical reductive biomass conversion: Direct conversion of 5-hydroxymethylfurfural (HMF) to 2, 5-hexanedione (HD) via reductive ring-opening. Green Chem. 2016, 18, 2956-2960.

8

You, B.; Liu, X.; Jiang, N.; Sun, Y. J. A general strategy for decoupled hydrogen production from water splitting by integrating oxidative biomass valorization. J. Am. Chem. Soc. 2016, 138, 13639-13646.

9

You, B.; Jiang, N.; Liu, X.; Sun, Y. J. Simultaneous H2 generation and biomass upgrading in water by an efficient noble-metal-free bifunctional electrocatalyst. Angew. Chem., Int. Ed. 2016, 55, 9913-9917.

10

Cuña, A.; Plascencia, C. R.; da Silva, E. L.; Marcuzzo, J.; Khan, S.; Tancredi, N.; Baldan, M. R.; de Fraga Malfatti, C. Electrochemical and spectroelectrochemical analyses of hydrothermal carbon supported nickel electrocatalyst for ethanol electro-oxidation in alkaline medium. Appl. Catal., B Environ. 2017, 202, 95-103.

11

Chadderdon, D. J.; Xin, L.; Qi, J.; Qiu, Y.; Krishna, P.; More, K. L.; Li, W. Z. Electrocatalytic oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid on supported Au and Pd bimetallic nanoparticles. Green Chem. 2014, 16, 3778-3786.

12

Grabowski, G.; Lewkowski, J.; Skowroński, R. The electrochemical oxidation of 5-hydroxymethylfurfural with the nickel oxide/hydroxide electrode. Electrochim. Acta 1991, 36, 1995.

13

Yang, N.; Tang, C.; Wang, K. Y.; Du, G.; Asiri, A. M.; Sun, X. P. Iron-doped nickel disulfide nanoarray: A highly efficient and stable electrocatalyst for water splitting. Nano Res. 2016, 9, 3346-3354.

14

Li, Y. J.; Zhang, H. C.; Jiang, M.; Kuang, Y.; Sun, X. M.; Duan, X. Ternary NiCoP nanosheet arrays: An excellent bifunctional catalyst for alkaline overall water splitting. Nano Res. 2016, 9, 2251-2259.

15

Wu, H. H.; Wang, J.; Wang, G. X.; Cai, F.; Ye, Y. F.; Jiang, Q. K.; Sun, S. C.; Miao, S.; Bao, X. H. High-performance bifunctional oxygen electrocatalyst derived from iron and nickel substituted perfluorosulfonic acid/polytetrafluoroethylene copolymer. Nano Energy 2016, 30, 801-809.

16

Zhang, Z. P.; Qin, Y. S.; Dou, M. L.; Ji, J.; Wang, F. One-step conversion from Ni/Fe polyphthalocyanine to N-doped carbon supported Ni-Fe nanoparticles for highly efficient water splitting. Nano Energy 2016, 30, 426-433.

17

Jia, X. D; Zhao, Y. F.; Chen, G. B.; Shang, L.; Shi, R.; Kang, X. F.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Ni3FeN nanoparticles derived from ultrathin NiFe-layered double hydroxide nanosheets: An efficient overall water splitting electrocatalyst. Adv. Energy Mater. 2016, 6, 1502585.

18

Wang, Y. Y.; Xie, C.; Liu, D. D.; Huang, X. B.; Huo, J.; Wang, S. Y. Nanoparticle-stacked porous nickel-iron nitride nanosheet: A highly efficient bifunctional electrocatalyst for overall water splitting. ACS Appl. Mater. Interfaces 2016, 8, 18652-18657.

19

Zhao, Y. F.; Jia, X. D.; Chen, G. B.; Shang, L.; Waterhouse, G. I.; Wu, L. Z.; Tung, C. H.; O'Hare, D.; Zhang, T. R. Ultrafine NiO nanosheets stabilized by TiO2 from monolayer NiTi-LDH precursors: An active water oxidation electrocatalyst. J. Am. Chem. Soc. 2016, 138, 6517-6524.

20

Yu, J.; Li, Q. Q.; Chen, N.; Xu, C. Y.; Zhen, L.; Wu, J. S.; Dravid, V. P. Carbon-coated nickel phosphide nanosheets as efficient dual-electrocatalyst for overall water splitting. ACS Appl. Mater. Interfaces 2016, 8, 27850-27858.

21

Wang, X. G.; Li, W.; Xiong, D. H.; Petrovykh, D. Y.; Liu, L. F. Bifunctional nickel phosphide nanocatalysts supported on carbon fiber paper for highly efficient and stable overall water splitting. Adv. Funct. Mater. 2016, 26, 4067-4077.

22

Chen, G. F.; Ma, T. Y.; Liu, Z. Q.; Li, N.; Su, Y. Z.; Davey, K.; Qiao, S. Z. Efficient and stable bifunctional electrocatalysts Ni/NixMy (M = P, S) for overall water splitting. Adv. Funct. Mater. 2016, 26, 3314-3323.

23

Zhang, H. M.; Li, Y. B.; Liu, P. R.; Li, Y.; Yang, D. J.; Yang, H. G.; Zhao, H. J. A new vapor-phase hydrothermal method to concurrently grow ZnO nanotube and nanorod array films on different sides of a zinc foil substrate. Chem. -Eur. J. 2012, 18, 5165-5169.

24

Liu, P. R.; Zhang, H. M.; Liu, H. W.; Wang, Y.; Yao, X. D.; Zhu, G. S.; Zhang, S. Q.; Zhao, H. J. A facile vapor-phase hydrothermal method for direct growth of titanate nanotubes on a titanium substrate via a distinctive nanosheet roll-up mechanism. J. Am. Chem. Soc. 2011, 133, 19032-19035.

25

Liu, P. R.; Wang, Y.; Zhang, H. M.; An, T. C.; Yang, H. G.; Tang, Z. Y.; Cai, W. P.; Zhao, H. J. Vapor-phase hydrothermal transformation of HTiOF3 intermediates into {001} faceted anatase single-crystalline nanosheets. Small 2012, 8, 3664-3673.

26

Wu, T. X.; Wang, G. Z.; Zhu, X. G.; Liu, P. R.; Zhang, X.; Zhang, H. M.; Zhang, Y. X.; Zhao, H. J. Growth and in situ transformation of TiO2 and HTiOF3 crystals on chitosan- polyvinyl alcohol co-polymer substrates under vapor phase hydrothermal conditions. Nano Res. 2016, 9, 745-754.

27

Tan, Z. J.; Liu, P. R.; Zhang, H. M.; Wang, Y.; Al-Mamun, M.; Yang, H. G.; Wang, D.; Tang, Z. Y.; Zhao, H. J. An in situ vapour phase hydrothermal surface doping approach for fabrication of high performance Co3O4 electrocatalysts with an exceptionally high S-doped active surface. Chem. Commun. 2015, 51, 5695-5697.

28

McCrory, C. C.; Jung, S.; Peters, J. C.; Jaramillo, T. F. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 2013, 135, 16977-16987.

29

Wohlgemuth, S. A.; White, R. J.; Willinger, M. G.; Titirici, M. M.; Antonietti, M. A one-pot hydrothermal synthesis of sulfur and nitrogen doped carbon aerogels with enhanced electrocatalytic activity in the oxygen reduction reaction. Green Chem. 2012, 14, 1515-1523.

30

Wu, X. L.; Yang, B.; Li, Z. J.; Lei, L. C.; Zhang, X. W. Synthesis of supported vertical NiS2 nanosheets for hydrogen evolution reaction in acidic and alkaline solution. RSC Adv. 2015, 5, 32976-32982.

31

Yang, S. L.; Yao, H. B.; Gao, M. R.; Yu, S. H. Monodisperse cubic pyrite NiS2 dodecahedrons and microspheres synthesized by a solvothermal process in a mixed solvent: Thermal stability and magnetic properties. CrystEngComm 2009, 11, 1383-1390.

32

Wu, T. X.; Wang, G. Z.; Zhang, X.; Chen, C.; Zhang, Y. X.; Zhao, H. J. Transforming chitosan into N-doped graphitic carbon electrocatalysts. Chem. Commun. 2015, 51, 1334-1337.

33

Tang, C.; Cheng, N. Y.; Pu, Z. H.; Xing, W.; Sun, X. P. NiSe nanowire film supported on nickel foam: An efficient and stable 3D bifunctional electrode for full water splitting. Angew. Chem., Int. Ed. 2015, 54, 9351-9355.

34

Dou, S.; Tao, L.; Huo, J.; Wang, S. Y.; Dai, L. M. Etched and doped Co9S8/graphene hybrid for oxygen electrocatalysis. Energy Environ. Sci. 2016, 9, 1320-1326.

35

Zeng, M.; Wang, H.; Zhao, C.; Wei, J. K.; Wang, W. L.; Bai, X. D. 3D graphene foam-supported cobalt phosphate and borate electrocatalysts for high-efficiency water oxidation. Sci. Bull. 2015, 60, 1426-1433.

36

Jiang, N.; You, B.; Sheng, M. L.; Sun, Y. J. Electrodeposited cobalt-phosphorous-derived films as competent bifunctional catalysts for overall water splitting. Angew. Chem., Int. Ed. 2015, 54, 6251-6254.

37

Liu, G.; Gao, X. S.; Wang, K. F.; He, D. Y.; Li, J. P. Uniformly mesoporous NiO/NiFe2O4 biphasic nanorods as efficient oxygen evolving catalyst for water splitting. Int. J. Hydrogen Energy 2016, 41, 17976-17986.

38

Duan, J. J.; Chen, S.; Vasileff, A.; Qiao, S. Z. Anion and cation modulation in metal compounds for bifunctional overall water splitting. ACS Nano 2016, 10, 8738-8745.

39

Zhu, Y. P.; Liu, Y. P.; Ren, T. Z.; Yuan, Z. Y. Self-supported cobalt phosphide mesoporous nanorod arrays: A flexible and bifunctional electrode for highly active electrocatalytic water reduction and oxidation. Adv. Funct. Mater. 2015, 25, 7337-7347.

40

Zhou, J.; Dou, Y. B.; Zhou, A. W.; Guo, R. M.; Zhao, M. J.; Li, J. R. MOF template-directed fabrication of hierarchically structured electrocatalysts for efficient oxygen evolution reaction. Adv. Energy Mater. 2017, 7, 1602643.

41

Song, J. H.; Zhu, C. Z.; Xu, B. Z.; Fu, S. F.; Engelhard, M. H.; Ye, R. F.; Du, D.; Beckman, S. P.; Lin, Y. H. Water splitting: Bimetallic cobalt-based phosphide zeolitic imidazolate framework: CoPx phase-dependent electrical conductivity and hydrogen atom adsorption energy for efficient overall water splitting. Adv. Energy Mater. 2017, 7, 1601555.

42

Chen, R. D.; Song, Y. X.; Wang, Z. K.; Gao, Y. H.; Sheng, Y.; Shu, Z. Y.; Zhang, J.; Li, X. A. Porous nickel disulfide/reduced graphene oxide nanohybrids with improved electrocatalytic performance for hydrogen evolution. Catal. Commun. 2016, 85, 26-29.

43

An, T. C.; Wang, Y.; Tang, J.; Wei, W.; Cui, X. Q.; Alenizi, A. M.; Zhang, L. J.; Zheng, G. F. Interlaced NiS2-MoS2 nanoflake-nanowires as efficient hydrogen evolution electrocatalysts in basic solutions. J. Mater. Chem. A 2016, 4, 13439-13443.

44

Jiang, N.; Tang, Q.; Sheng, M. L.; You, B.; Jiang, D. E.; Sun, Y. J. Nickel sulfides for electrocatalytic hydrogen evolution under alkaline conditions: A case study of crystalline NiS, NiS2, and Ni3S2 nanoparticles. Catal. Sci. Technol. 2016, 6, 1077-1084.

45

Xie, J. F.; Zhang, J. J.; Li, S.; Grote, F.; Zhang, X. D.; Zhang, H.; Wang, R. X.; Lei, Y.; Pan, B. C.; Xie, Y. Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J. Am. Chem. Soc. 2013, 135, 17881-17888.

46

Popczun, E. J.; McKone, J. R.; Read, C. G.; Biacchi, A. J.; Wiltrout, A. M.; Lewis, N. S.; Schaak, R. E. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2013, 135, 9267-9270.

47

Pu, Z. H.; Liu, Q.; Tang, C.; Asiri, A. M.; Sun, X. P. Ni2P nanoparticle films supported on a Ti plate as an efficient hydrogen evolution cathode. Nanoscale 2014, 6, 11031-11034.

48

Li, S. J.; Guo, W.; Yuan, B. Q.; Zhang, D. J.; Feng, Z. Q.; Du, J. M. Assembly of ultrathin NiOOH nanosheets on electrochemically pretreated glassy carbon electrode for electrocatalytic oxidation of glucose and methanol. Sens. Actuators B Chem. 2017, 240, 398-407.

49

Thorat, G. M.; Jadhav, H. S.; Seo, J. G. Bi-functionality of mesostructured MnCo2O4 microspheres for supercapacitor and methanol electro-oxidation. Ceram. Int. 2017, 43, 2670-2679.

50

Vuyyuru, K. R.; Strasser, P. Oxidation of biomass derived 5-hydroxymethylfurfural using heterogeneous and electrochemical catalysis. Catal. Today 2012, 195, 144-154.

51

Zhu, X. J.; Dou, X. Y.; Dai, J.; An, X. D.; Guo, Y. Q.; Zhang, L. D.; Tao, S.; Zhao, J. Y.; Chu, W. S.; Zeng, X. C. et al. Metallic nickel hydroxide nanosheets give superior electrocatalytic oxidation of urea for fuel cells. Angew. Chem., Int. Ed. 2016, 55, 12465-12469.

Nano Research
Pages 1004-1017
Cite this article:
Wu T, Zhu X, Wang G, et al. Vapor-phase hydrothermal growth of single crystalline NiS2 nanostructure film on carbon fiber cloth for electrocatalytic oxidation of alcohols to ketones and simultaneous H2 evolution. Nano Research, 2018, 11(2): 1004-1017. https://doi.org/10.1007/s12274-017-1714-0

777

Views

64

Crossref

N/A

Web of Science

66

Scopus

2

CSCD

Altmetrics

Received: 07 April 2017
Revised: 09 June 2017
Accepted: 11 June 2017
Published: 04 August 2017
© Tsinghua University Press and Springer-Verlag GmbH Germany 2017
Return