AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Self-assembled formation of long, thin, and uncoalesced GaN nanowires on crystalline TiN films

David van Treeck( )Gabriele CalabreseJelle J. W. GoertzVladimir M. KaganerOliver BrandtSergio Fernández-GarridoLutz Geelhaar
Paul-Drude-Institut für FestkörperelektronikLeibniz-Institut im Forschungsverbund Berlin e.V., Hausvogteiplatz 5–7Berlin10117Germany
Show Author Information

Graphical Abstract

Abstract

We investigate in detail the self-assembled nucleation and growth of vertically oriented GaN nanowires by molecular beam epitaxy on crystalline TiN films. We demonstrate that this type of substrate allows for the growth of long and thin GaN nanowires that do not suffer from coalescence, a problem common to the growth on Si and other substrates. Only beyond a certain nanowire length that depends on the nanowire density and exceeds here 1.5 μm, coalescence takes place by bundling, i.e. the same process as on Si. By analyzing the nearest neighbor distance distribution, we identify the diffusion-induced repulsion of neighboring nanowires as the main mechanism limiting nanowire density during nucleation on TiN. Since on Si the final density is determined by shadowing of the impinging molecular beams by existing nanowires, it is the difference in adatom surface diffusion that enables the formation of nanowire ensembles with reduced density on TiN. These nanowire ensembles combine properties that make them a promising basis for the growth of core–shell heterostructures.

References

1

Yoshizawa, M.; Kikuchi, A.; Mori, M.; Fujita, N.; Kishino, K. Growth of self-organized GaN nanostructures on Al2O3(0001) by RF-radical source molecular beam epitaxy. Jpn. J. Appl. Phys. 1997, 36, L459-L462.

2

Sanchez-Garcia, M.; Calleja, E.; Monroy, E.; Sánchez, F. J.; Calle, F.; Munõz, E.; Beresford, R. The effect of the Ⅲ/Ⅴ ratio and substrate temperature on the morphology and properties of GaN- and AlN-layers grown by molecular beam epitaxy on Si(111). J. Cryst. Growth 1998, 183, 23-30.

3

Cerutti, L.; Ristíc, J.; Fernández-Garrido, S.; Calleja, E.; Trampert, A.; Ploog, K. H.; Lazíc, S.; Calleja, J. M. Wurtzite GaN nanocolumns grown on Si(001) by molecular beam epitaxy. Appl. Phys. Lett. 2006, 88, 213114.

4

Bertness, K. A.; Roshko, A.; Mansfield, L. M.; Harvey, T. E.; Sanford, N. A. Mechanism for spontaneous growth of GaN nanowires with molecular beam epitaxy. J. Cryst. Growth 2008, 310, 3154-3158.

5

Stoica, T.; Sutter, E.; Meijers, R. J.; Debnath, R. K.; Calarco, R.; Lüth, H.; Grützmacher, D. Interface and wetting layer effect on the catalyst-free nucleation and growth of GaN nanowires. Small 2008, 4, 751-754.

6

Geelhaar, L.; Chèze, C.; Jenichen, B.; Brandt, O.; Pfüller, C.; Münch, S.; Rothemund, R.; Reitzenstein, S.; Forchel, A.; Kehagias, T. et al. Properties of GaN nanowires grown by molecular beam epitaxy. IEEE J. Sel. Top. Quantum Electron. 2011, 17, 878-888.

7

Schuster, F.; Furtmayr, F.; Zamani, R.; Magén, C.; Morante, J. R.; Arbiol, J.; Garrido, J. A.; Stutzmann, M. Self-assembled GaN nanowires on diamond. Nano Lett. 2012, 12, 2199-2204.

8

Sobanska, M.; Klosek, K.; Borysiuk, J.; Kret, S.; Tchutchulasvili, G.; Gieraltowska, S.; Zytkiewicz, Z. R. Enhanced catalyst-free nucleation of GaN nanowires on amorphous Al2O3 by plasma-assisted molecular beam epitaxy. J. Appl. Phys. 2014, 115, 043517.

9

Wölz, M.; Hauswald, C.; Flissikowski, T.; Gotschke, T.; Fernández-Garrido, S.; Brandt, O.; Grahn, H. T.; Geelhaar, L.; Riechert, H. Epitaxial growth of GaN nanowires with high structural perfection on a metallic TiN film. Nano Lett. 2015, 15, 3743-3747.

10

Calabrese, G.; Corfdir, P.; Gao, G. H.; Pfüller, C.; Trampert, A.; Brandt, O.; Geelhaar, L.; Fernández-Garrido, S. Molecular beam epitaxy of single crystalline GaN nanowires on a flexible Ti foil. Appl. Phys. Lett. 2016, 108, 202101.

11

May, B. J.; Sarwar, A. T. M. G.; Myers, R. C. Nanowire LEDs grown directly on flexible metal foil. Appl. Phys. Lett. 2016, 108, 141103.

12

Trampert, A.; Ristíc, J.; Jahn, U.; Calleja, E.; Ploog, K. TEM study of (Ga, Al)N nanocolumns and embedded GaN nanodiscs. In Microscopy of Semiconducting Materials (2003), Bristol, PA, USA, 2003, pp 167-170.

13

Calleja, E.; Ristíc, J.; Fernández-Garrido, S.; Cerutti, L.; Sánchez-García, M. A.; Grandal, J.; Trampert, A.; Jahn, U.; Sánchez, G.; Griol, A. et al. Growth, morphology, and structural properties of group-Ⅲ-nitride nanocolumns and nanodisks. Phys. Status Solidi (B) 2007, 244, 2816-2837.

14

Bertness, K. A.; Sanford, N. A.; Davydov, A. V. GaN nanowires grown by molecular beam epitaxy. IEEE J. Sel. Top. Quantum Electron. 2011, 17, 847-858.

15

Hersee, S. D.; Rishinaramangalam, A. K.; Fairchild, M. N.; Zhang, L.; Varangis, P. Threading defect elimination in GaN nanowires. J. Mater. Res. 2011, 26, 2293-2298.

16

Zhang, X.; Dubrovskii, V. G.; Sibirev, N. V.; Ren, X. M. Analytical study of elastic relaxation and plastic deformation in nanostructures on lattice mismatched substrates. Cryst. Growth Des. 2011, 11, 5441-5448.

17

Kikuchi, A.; Kawai, M.; Tada, M.; Kishino, K. InGaN/GaN multiple quantum disk nanocolumn light-emitting diodes grown on (111) Si substrate. Jpn. J. Appl. Phys. 2004, 43, L1524-L1526.

18

Wang, D. F.; Pierre, A.; Kibria, M. G.; Cui, K.; Han, X. G.; Bevan, K. H.; Guo, H.; Paradis, S.; Hakima, A. -R.; Mi, Z. T. Wafer-level photocatalytic water splitting on GaN nanowire arrays grown by molecular beam epitaxy. Nano Lett. 2011, 11, 2353-2357.

19

Waag, A.; Wang, X.; Fündling, S.; Ledig, J.; Erenburg, M.; Neumann, R.; Al Suleiman, M.; Merzsch, S.; Wei, J. D.; Li, S. F. et al. The nanorod approach: GaN nanoLEDs for solid state lighting. Phys. Status Solidi (C) 2011, 8, 2296-2301.

20

Kamimura, J.; Bogdanoff, P.; Lähnemann, J.; Hauswald, C.; Geelhaar, L.; Fiechter, S.; Riechert, H. Photoelectrochemical properties of (In, Ga)N nanowires for water splitting investigated by in situ electrochemical mass spectroscopy. J. Am. Chem. Soc. 2013, 135, 10242-10245.

21

Gogneau, N.; Chrétien, P.; Galopin, E.; Guilet, S.; Travers, L.; Harmand, J. C.; Houzé, F. GaN nanowires for piezoelectric generators. Phys. Status Solidi Rapid Res. Lett. 2014, 8, 414-419.

22

Schuster, F.; Hetzl, M.; Weiszer, S.; Wolfer, M.; Kato, H.; Nebel, C. E.; Garrido, J. A.; Stutzmann, M. Optoelectronic properties of p-diamond/n-GaN nanowire heterojunctions. J. Appl. Phys. 2015, 118, 154303.

23

Zhao, S. R.; Nguyen, H. P. T.; Kibria, M. G.; Mi, Z. T. Ⅲ-Nitride nanowire optoelectronics. Prog. Quantum Electron. 2015, 44, 14-68.

24

Aharonovich, I.; Englund, D.; Toth, M. Solid-state single-photon emitters. Nat. Photonics 2016, 10, 631-641.

25

Calarco, R.; Meijers, R. J.; Debnath, R. K.; Stoica, T.; Sutter, E.; Lüth, H. Nucleation and growth of GaN nanowires on Si(111) performed by molecular beam epitaxy. Nano Lett. 2007, 7, 2248-2251.

26

Furtmayr, F.; Vielemeyer, M.; Stutzmann, M.; Arbiol, J.; Estradé, S.; Peirò, F.; Morante, J. R.; Eickhoff, M. Nucleation and growth of GaN nanorods on Si (111) surfaces by plasma-assisted molecular beam epitaxy-The influence of Si- and Mg-doping. J. Appl. Phys. 2008, 104, 034309.

27

Consonni, V.; Knelangen, M.; Trampert, A.; Geelhaar, L.; Riechert, H. Nucleation and coalescence effects on the density of self-induced GaN nanowires grown by molecular beam epitaxy. Appl. Phys. Lett. 2011, 98, 071913.

28

Brandt, O.; Fernández-Garrido, S.; Zettler, J. K.; Luna, E.; Jahn, U.; Chèze, C.; Kaganer, V. M. Statistical analysis of the shape of one-dimensional nanostructures: Determining the coalescence degree of spontaneously formed GaN nanowires. Cryst. Growth Des. 2014, 14, 2246-2253.

29

Fernández-Garrido, S.; Kaganer, V. M.; Hauswald, C.; Jenichen, B.; Ramsteiner, M.; Consonni, V.; Geelhaar, L.; Brandt, O. Correlation between the structural and optical properties of spontaneously formed GaN nanowires: A quantitative evaluation of the impact of nanowire coalescence. Nanotechnology 2014, 25, 455702.

30

Kaganer, V. M.; Fernández-Garrido, S.; Dogan, P.; Sabelfeld, K. K.; Brandt, O. Nucleation, growth, and bundling of GaN nanowires in molecular beam epitaxy: Disentangling the origin of nanowire coalescence. Nano Lett. 2016, 16, 3717-3725.

31

Consonni, V.; Knelangen, M.; Jahn, U.; Trampert, A.; Geelhaar, L.; Riechert, H. Effects of nanowire coalescence on their structural and optical properties on a local scale. Appl. Phys. Lett. 2009, 95, 241910.

32

Jenichen, B.; Brandt, O.; Pfüller, C.; Dogan, P.; Knelangen, M.; Trampert, A. Macro- and micro-strain in GaN nanowires on Si(111). Nanotechnology 2011, 22, 295714.

33

Grossklaus, K. A.; Banerjee, A.; Jahangir, S.; Bhattacharya, P.; Millunchick, J. M. Misorientation defects in coalesced self-catalyzed GaN nanowires. J. Cryst. Growth 2013, 371, 142-147.

34

Fan, S. Z.; Zhao, S. R.; Liu, X. D.; Mi, Z. T. Study on the coalescence of dislocation-free GaN nanowires on Si and SiOx. J. Vac. Sci. Technol. B Nanotechnol. Microelectron. 2014, 32, 02C114.

35

Kaganer, V. M.; Jenichen, B.; Brandt, O. Elastic versus plastic strain relaxation in coalesced GaN nanowires: An X-ray diffraction study. Phys. Rev. Appl. 2016, 6, 064023.

36

Hetzl, M.; Schuster, F.; Winnerl, A.; Weiszer, S.; Stutzmann, M. GaN nanowires on diamond. Mater. Sci. Semicond. Process. 2016, 48, 65-78.

37

Carnevale, S. D.; Yang, J.; Phillips, P. J.; Mills, M. J.; Myers, R. C. Three-dimensional GaN/AlN nanowire heterostructures by separating nucleation and growth processes. Nano Lett. 2011, 11, 866-871.

38

Zettler, J. K.; Corfdir, P.; Geelhaar, L.; Riechert, H.; Brandt, O.; Fernández-Garrido, S. Improved control over spontaneously formed GaN nanowires in molecular beam epitaxy using a two-step growth process. Nanotechnology 2015, 26, 445604.

39

Kong, X.; Ristíc, J.; Sanchez-Garcia, M. A.; Calleja, E.; Trampert, A. Polarity determination by electron energy-loss spectroscopy: Application to ultra-small Ⅲ-nitride semiconductor nanocolumns. Nanotechnology 2011, 22, 415701.

40

Largeau, L.; Galopin, E.; Gogneau, N.; Travers, L.; Glas, F.; Harmand, J. -C. N-polar GaN nanowires seeded by Al droplets on Si (111). Cryst. Growth Des. 2012, 12, 2724-2729.

41

Auzelle, T.; Haas, B.; Minj, A.; Bougerol, C.; Rouvière, J. -L.; Cros, A.; Colchero, J.; Daudin, B. The influence of AlN buffer over the polarity and the nucleation of self-organized GaN nanowires. J. Appl. Phys. 2015, 117, 245303.

42

Brubaker, M. D.; Levin, I.; Davydov, A. V.; Rourke, D. M.; Sanford, N. A.; Bright, V. M.; Bertness, K. A. Effect of AlN buffer layer properties on the morphology and polarity of GaN nanowires grown by molecular beam epitaxy. J. Appl. Phys. 2011, 110, 053506.

43

Bertness, K. A.; Roshko, A.; Mansfield, L. M.; Harvey, T. E.; Sanford, N. A. Nucleation conditions for catalyst-free GaN nanowires. J. Cryst. Growth 2007, 300, 94-99.

44

Luther, B. P.; Mohney, S. E.; Jackson, T. N. Titanium and titanium nitride contacts to n-type gallium nitride. Semicond. Sci. Technol. 1998, 13, 1322-1327.

45

Gautier, S.; Komninou, P.; Patsalas, P.; Kehagias, T.; Logothetidis, S.; Dimitriadis, C. A.; Nouet, G. Optical and electrical properties of TiN/n-GaN contacts in correlation with their structural properties. Semicond. Sci. Technol. 2003, 18, 594-601.

46

Maus, C.; Stauden, T.; Ecke, G.; Tonisch, K.; Pezoldt, J. Smooth ceramic titanium nitride contacts on AlGaN/GaN-heterostructures. Semicond. Sci. Technol. 2012, 27, 115007.

47

Heying, B.; Averbeck, R.; Chen, L. F.; Haus, E.; Riechert, H.; Speck, J. S. Control of GaN surface morphologies using plasma-assisted molecular beam epitaxy. J. Appl. Phys. 2000, 88, 1855-1860.

48

Schneider, C. A.; Rasband, W. S.; Eliceiri, K. W. NIH image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671-675.

49

Fernández-Garrido, S.; Kaganer, V. M.; Sabelfeld, K. K.; Gotschke, T.; Grandal, J.; Calleja, E.; Geelhaar, L.; Brandt, O. Self-regulated radius of spontaneously formed GaN nanowires in molecular beam epitaxy. Nano Lett. 2013, 13, 3274-3280.

50

Pfüller, C.; Ramsteiner, M.; Brandt, O.; Grosse, F.; Rathsfeld, A.; Schmidt, G.; Geelhaar, L.; Riechert, H. Raman spectroscopy as a probe for the coupling of light into ensembles of sub-wavelength-sized nanowires. Appl. Phys. Lett. 2012, 101, 083104.

51

Venables, J. A.; Spiller, G. D. T.; Hanbucken, M. Nucleation and growth of thin films. Rep. Prog. Phys. 1984, 47, 399-459.

52

Thompson, C. V. On the grain size and coalescence stress resulting from nucleation and growth processes during formation of polycrystalline thin films. J. Mater. Res. 1999, 14, 3164-3168.

53

Consonni, V.; Trampert, A.; Geelhaar, L.; Riechert, H. Physical origin of the incubation time of self-induced GaN nanowires. Appl. Phys. Lett. 2011, 99, 033102.

54

Kishino, K.; Sekiguchi, H.; Kikuchi, A. Improved Ti-mask selective-area growth (SAG) by rf-plasma-assisted molecular beam epitaxy demonstrating extremely uniform GaN nanocolumn arrays. J. Cryst. Growth 2009, 311, 2063-2068.

55

Moison, J. M.; Houzay, F.; Barthe, F.; Leprince, L.; André, E.; Vatel, O. Self-organized growth of regular nanometer-scale InAs dots on GaAs. Appl. Phys. Lett. 1994, 64, 196-198.

Nano Research
Pages 565-576
Cite this article:
van Treeck D, Calabrese G, Goertz JJW, et al. Self-assembled formation of long, thin, and uncoalesced GaN nanowires on crystalline TiN films. Nano Research, 2018, 11(1): 565-576. https://doi.org/10.1007/s12274-017-1717-x

680

Views

33

Crossref

N/A

Web of Science

30

Scopus

0

CSCD

Altmetrics

Received: 10 April 2017
Revised: 01 June 2017
Accepted: 10 June 2017
Published: 15 August 2017
© Tsinghua University Press and Springer-Verlag GmbH Germany 2017
Return