AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Highly sensitive hybrid nanofiber-based room-temperature CO sensors: Experiments and density functional theory simulations

Lili Wang1Ruiqing Chai2,3Zheng Lou2( )Guozhen Shen2,3( )
State Key Laboratory on Integrated OptoelectronicsCollege of Electronic Science and EngineeringJilin UniversityChangchun130012China
State Key Laboratory for Superlattices and MicrostructuresInstitute of SemiconductorsChinese Academy of SciencesBeijing100083China
College of Materials Science and Opto-electronic TechnologyUniversity of Chinese Academy of SciencesBeijing100029China
Show Author Information

Graphical Abstract

Abstract

Chemical sensors (CSs) are an emerging area in nanoscience research, which focuses on the highly sensitive detection of toxic and hazardous gases and disease-related volatile organics. While the field has advanced rapidly in recent years, it lacks the theoretical support required for the rational design of innovative materials with tunable measurement responses. Herein, we present a one-dimensional (1D) hybrid nanofiber decorated with ultrafine NiO nanoparticles (NiO NPs) as an efficient active component for CSs. Highly dispersed (110)-facet NiO NPs with a high percentage of Ni2+ active sites with unsaturated coordination were confined in a TiO2 nanofiber (TiO2 NF) matrix that is favorable for surface catalytic reactions. The CSs constructed using the 1D heterostructure NiO/TiO2 nanofibers (NiO/TiO2 HNFs) exhibited a highly selective response to trace CO gas molecules (1 ppm) with high sensitivity (ΔR/R0 = 1.02), ultrafast response/recovery time (Tres/Trecov < 20 s), and remarkable reproducibility at room temperature. The density functional theory (DFT) simulations and experimental results confirmed that the selective response could be attributed to the high molecular adsorption energy of the NiO nanoparticles with (110) facets and abundant interfaces, which act synergistically to promote CO adsorption and facilitate charge transfer.

Electronic Supplementary Material

Download File(s)
nr-11-2-1029_ESM.pdf (2.6 MB)

References

1

Chen, P. C.; Sukcharoenchoke, S.; Ryu, K.; de Arco, L. G.; Badmaev, A.; Wang, C.; Zhou, C. W. 2, 4, 6-Trinitrotoluene (TNT) chemical sensing based on aligned single-walled carbon nanotubes and ZnO nanowires. Adv. Mater. 2010, 22, 1900–1904.

2

Zhang, J.; Liu, X. H.; Neri, G.; Pinna, N. Nanostructured materials for room-temperature gas sensors. Adv. Mater. 2016, 28, 795–831.

3

Wang, L. L.; Jackman, J. A.; Tan, E. L.; Park, J. H.; Potroz, M. G.; Hwang, E. T.; Cho, N. J. High-performance, flexible electronic skin sensor incorporating natural microcapsule actuators. Nano Energy 2017, 36, 38–45.

4

Lou, Z; Chen, S.; Wang, L. L.; Jiang, K., Shen, G. Z. An ultra-sensitive and rapid response speed graphene pressure sensors for electronic skin and health monitoring. Nano Energy 2016, 23, 7–14.

5

Cho, S. Y.; Lee, Y.; Koh, H. J.; Jung, H.; Kim, J. S.; Yoo, H. W.; Kim, J.; Jung, H. T. Superior chemical sensing performance of black phosphorus: Comparison with MoS2 and graphene. Adv. Mater. 2016, 28, 7020–7028.

6

Wang, L. L.; Deng, J. N.; Lou, Z.; Zhang, T. Cross-linked p-type Co3O4 octahedral nanoparticles in 1D n-type TiO2 nanofibers for high-performance sensing devices. J. Mater. Chem. A 2014, 2, 10022–10028.

7

Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill, E. W.; Blake, P.; Katsnelson, M. I.; Novoselov, K. S. Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 2007, 6, 652–655.

8

Wang, L. L.; Fei, T.; Lou, Z.; Zhang, T. Three-dimensional hierarchical flowerlike α-Fe2O3 nanostructures: Synthesis and ethanol-sensing properties. ACS Appl. Mater. Interfaces 2011, 3, 4689–4694.

9

Wang, L. L.; Dou, H. M.; Lou, Z.; Zhang, T. Encapsuled nanoreactors (Au@SnO2): A new sensing material for chemical sensors. Nanoscale 2013, 5, 2686–2691.

10

Ding, M. N.; Liu, Y.; Wang, G. M.; Zhao, Z. P.; Yin, A. X.; He, Q. Y.; Huang, Y.; Duan, X. F. Highly sensitive chemical detection with tunable sensitivity and selectivity from ultrathin platinum nanowires. Small 2017, 13, 1602969.

11

Ding, M. N.; Sorescu, D. C.; Star, A. Photoinduced charge transfer and acetone sensitivity of single-walled carbon nanotube−titanium dioxide hybrids. J. Am. Chem. Soc. 2013, 135, 9015–9022.

12

Zhao, Y. F.; Jia, X. D.; Chen, G. B.; Shang, L.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; O'Hare, D.; Zhang, T. R. Ultrafine NiO nanosheets stabilized by TiO2 from monolayer NiTi-LDH precursors: An active water oxidation electrocatalyst. J. Am. Chem. Soc. 2016, 138, 6517–6524.

13

Han, X. G.; Jin, M. S.; Xie, S. F.; Kuang, Q.; Jiang, Z. Y.; Jiang, Y. Q.; Xie, Z. X.; Zheng, L. S. Synthesis of tin dioxide octahedral nanoparticles with exposed high-energy {221} facets and enhanced gas-sensing properties. Angew. Chem., Int. Ed. 2009, 48, 9180–9183.

14

Gao, M. R.; Sheng, W. C.; Zhuang, Z. B.; Fang, Q. R.; Gu, S.; Jiang, J.; Yan, Y. S. Efficient water oxidation using nanostructured α-nickel-hydroxide as an electrocatalyst. J. Am. Chem. Soc. 2014, 136, 7077–7084.

15

Hou, L. B.; Li, S.; Lin, Y. H.; Wang, D. J.; Xie, T. F. Photogenerated charges transfer across the interface between NiO and TiO2 nanotube arrays for photocatalytic degradation: A surface photovoltage study. J. Colloid Interface Sci. 2016, 464, 96–102.

16

Nattestad, A.; Mozer, A. J.; Fischer, M. K. R.; Cheng, Y. B.; Mishra, A.; Bäuerle, P.; Bach, U. Highly efficient photocathodes for dye-sensitized tandem solar cells. Nat. Mater. 2010, 9, 31–35.

17

Hu, J. C.; Zhu, K. K.; Chen, L. F.; Yang, H. J.; Li, Z.; Suchopar, A.; Richards, R. Preparation and surface activity of single-crystalline NiO(111) nanosheets with hexagonal holes: A semiconductor nanospanner. Adv. Mater. 2008, 20, 267–271.

18

Lou, Z.; Li, F.; Deng, J. A.; Wang, L. L.; Zhang, T. Branch-like hierarchical heterostructure (α-Fe2O3/TiO2): A novel sensing material for trimethylamine gas sensor. ACS Appl. Mater. Interfaces 2013, 5, 12310–12316.

19

Yuan, W. J.; Liu, A. R.; Huang, L.; Li, C.; Shi, G. Q. High-performance NO2 sensors based on chemically modified graphene. Adv. Mater. 2013, 25, 766–771.

20

Patra, A. K.; Kundu, S. K.; Kim, D.; Bhaumik, A. Controlled synthesis of a hexagonal-shaped NiO nanocatalyst with highly reactive facets {110} and its catalytic activity. ChemCatChem 2015, 7, 791–798.

21

Su, D. W.; Ford, M.; Wang, G. X. Mesoporous NiO crystals with dominantly exposed {110} reactive facets for ultrafast lithium storage. Sci. Rep. 2012, 2, 924.

22

Lv, Y. H.; Huang, K.; Zhang, W.; Ran, S. L.; Chi, F. L.; Yang, B.; Liu, X. G. High-performance gas-sensing properties of octahedral NiO crystals prepared via one-step controllable synthesis route. Cryst. Res. Technol. 2014, 49, 109–115.

23

Zhao, Y.; Wei, C.; Sun, S. N.; Wang, L. P.; Xu, Z. J. Reserving interior void space for volume change accommodation: An example of cable-like MWNTs@SnO2@C composite for superior lithium and sodium storage. Adv. Sci. 2015, 2, 1500097.

24

Kim, H. J.; Lee, J. H. Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview. Sens. Actuator B 2014, 192, 607–627.

25

Wang, L. L.; Ng, W. B.; Jackman, J. A.; Cho, N. J. Graphene- functionalized natural microcapsules: Modular building blocks for ultrahigh sensitivity bioelectronic platforms. Adv. Funct. Mater. 2016, 26, 2097–2103.

26

Wang, L. L.; Jackman, J. A.; Ng, W. B.; Cho, N. -J. Flexible, graphene-coated biocomposite for highly sensitive, real-time molecular detection. Adv. Funct. Mater. 2016, 26, 8623–8630.

27

Risavi, B. L.; Wadas, R. J. Jr.; Thomas, C.; Kupas, D. F. A novel method for continuous environmental surveillance for carbon monoxide exposure to protect emergency medical service providers and patients. J. Emerg. Med. 2013, 44, 637–640.

28

Dang, L. F.; Zhang, G.; Kan, K.; Lin, Y. F.; Bai, F. Q.; Jing, L. Q.; Shen, P. K.; Li, L.; Shi, K. Y. Heterostructured Co3O4/PEI-CNTs composite: Fabrication, characterization and CO gas sensors at room temperature. J. Mater. Chem. A 2014, 2, 4558–4565.

29

Deng, D. H.; Chen, X. Q.; Yu, L.; Wu, X.; Liu, Q. F.; Liu, Y.; Yang, H. X.; Tian, H. F.; Hu, Y. F.; Du, P. P. et al. A single iron site confined in a graphene matrix for the catalytic oxidation of benzene at room temperature. Sci. Adv. 2015, 1, e1500462.

30

Late, D. J.; Huang, Y. -K.; Liu, B.; Acharya, J.; Shirodkar, S. N.; Luo, J. J.; Yan, A. M.; Charles, D.; Waghmare, U. V.; Dravid, V. P. et al. Sensing behavior of atomically thin-layered MoS2 transistors. ACS Nano 2013, 7, 4879–4891.

31

Gao, C.; Meng, Q. Q.; Zhao, K.; Yin, H. J.; Wang, D. W.; Guo, J.; Zhao, S. L.; Chang, L.; He, M.; Li, Q. X. et al. Co3O4 hexagonal platelets with controllable facets enabling highly efficient visible-light photocatalytic reduction of CO2. Adv. Mater. 2016, 28, 6485–6490.

32

Luo, W.; Zhao, T.; Li, Y. H.; Wei, J.; Xu, P. C.; Li, X. X.; Wang, Y. W.; Zhang, W. Q.; Elzatahry, A. A.; Alghamdi, A. et al. A micelle fusion–aggregation assembly approach to mesoporous carbon materials with rich active sites for ultrasensitive ammonia sensing. J. Am. Chem. Soc. 2016, 138, 12586–12595.

33

Nagarajan, V.; Chandiramouli, R. NiO nanocone as a CO sensor: DFT investigation. Struct. Chem. 2014, 25, 1765–1771.

34

Ding, M. N.; Sorescu, D. C.; Kotchey, G. P.; Star, A. Welding of gold nanoparticles on graphitic templates for chemical sensing. J. Am. Chem. Soc. 2012, 134, 3472–3479.

35

Wang, M. G.; Hu, Y. M.; Han, J.; Guo, R.; Xiong, H. X.; Yin, Y. D. TiO2/NiO hybrid shells: p–n junction photocatalysts with enhanced activity under visible light. J. Mater. Chem. A 2015, 3, 20727–20735.

36

Mizokawa, Y.; Nakamura, S.; ESR study of adsorbed oxygen on tin dioxide. Oyobuturi 1977, 46, 580–588.

37

Chang, S. C.; Oxygen chemisorption on tin oxide: Correlation between electrical conductivity and EPR measurements. J. Vac. Sci. Technol. 1980, 17, 366–369.

38

Kim, H. R.; Choi, K. I.; Kim, K. M.; Kim, I. D.; Cao, G. Z.; Lee, J. H. Ultra-fast responding and recovering C2H5OH sensors using SnO2 hollow spheres prepared and activated by Ni templates. Chem. Commun. 2010, 46, 5061–5063.

39

Kim, H. J.; Yoon, J. W.; Choi, K. I.; Jang, H. W.; Umar, A.; Lee, J. H. Ultraselective and sensitive detection of xylene and toluene for monitoring indoor air pollution using Cr-doped NiO hierarchical nanostructures. Nanoscale 2013, 5, 7066–7073.

40

Yoon, J. W.; Kim, H. J.; Kim, I. D.; Lee, J. H. Electronic sensitization of the response to C2H5OH of p-type NiO nanofibers by Fe doping. Nanotechnology 2013, 24, 444005.

Nano Research
Pages 1029-1037
Cite this article:
Wang L, Chai R, Lou Z, et al. Highly sensitive hybrid nanofiber-based room-temperature CO sensors: Experiments and density functional theory simulations. Nano Research, 2018, 11(2): 1029-1037. https://doi.org/10.1007/s12274-017-1718-9

731

Views

44

Crossref

N/A

Web of Science

43

Scopus

1

CSCD

Altmetrics

Received: 13 April 2017
Revised: 05 June 2017
Accepted: 11 June 2017
Published: 11 August 2017
© Tsinghua University Press and Springer-Verlag GmbH Germany 2017
Return