AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Ultrasensitive detection of Ebola matrix protein in a memristor mode

Bergoi Ibarlucea1,2( )Teuku Fawzul Akbar1Kihyun Kim3Taiuk Rim3Chang-Ki Baek3Alon Ascoli4Ronald Tetzlaff4Larysa Baraban1,2( )Gianaurelio Cuniberti1,2
Institute of Materials ScienceMax Bergmann Center for BiomaterialsTechnische Universität DresdenBudapester Str. 27Dresden01069Germany
Center for Advancing Electronics Dresden (CFAED)Technische Universität DresdenDresden01069Germany
Department of Creative IT EngineeringPohang University of Science and TechnologyPohang37673Republic of Korea
Chair of Fundamentals of Electrical EngineeringTechnische Universität DresdenMommsenstraße 12Dresden01069Germany
Show Author Information

Graphical Abstract

Abstract

We demonstrate the direct biosensing of the Ebola VP40 matrix protein, using a memristor mode of a liquid-integrated nanodevice, based on a large array of honeycomb-shaped silicon nanowires. To shed more light on the principle of biodetection using memristors, we engineered the opening of the current-minima voltage gap VGAP by involving the third gap-control electrode (gate voltage, VG) into the system. The primary role of VG is to mimic the presence of the charged species of the desired sign at the active area of the sensor. We further showed the advantages of biodetection with an initially opened controlled gap (VGAP ≠ 0), which allows the detection of the lowest concentrations of the biomolecules carrying arbitrary positive or negative charges; this feature was not present in previous configurations. We compared the bio-memristor performance, in terms of its detection range and sensitivity, to that of the already-known field-effect transistor (FET) mode by operating the same device. To our knowledge, this is the first demonstration of Ebola matrix protein detection using a nanoscaled electrical sensor.

Electronic Supplementary Material

Download File(s)
nr-11-2-1057_ESM.pdf (793.2 KB)

References

1

Liu, J.; Xie, C.; Dai, X. C.; Jin, L. H.; Zhou, W.; Lieber, C. M. Multifunctional three-dimensional macroporous nanoelectronic networks for smart materials. Proc. Natl. Acad. Sci. USA 2013, 110, 6694-6699.

2

Zörgiebel, F. M.; Pregl, S.; Römhildt, L.; Opitz, J.; Weber, W. M.; Mikolajick, T.; Baraban, L.; Cuniberti, G. Schottky barrier-based silicon nanowire pH sensor with live sensitivity control. Nano Res. 2014, 7, 263-271.

3

Gao, X. P. A.; Zheng, G. F.; Lieber, C. M. Subthreshold regime has the optimal sensitivity for nanowire FET biosensors. Nano Lett. 2010, 10, 547-552.

4

Cui, Y.; Wei, Q. Q.; Park, H.; Lieber, C. M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 2001, 293, 1289-1292.

5

Haes, A. J.; Van Duyne, R. P. A nanoscale optical biosensor: Sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J. Am. Chem. Soc. 2002, 124, 10596-10604.

6

Vu, X. T.; GhoshMoulick, R.; Eschermann, J. F.; Stockmann, R.; Offenhäusser, A.; Ingebrandt, S. Fabrication and application of silicon nanowire transistor arrays for biomolecular detection. Sen. Actuators, B Chem. 2010, 144, 354-360.

7

Patolsky, F.; Zheng, G. F.; Lieber, C. M. Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species. Nat. Protoc. 2006, 1, 1711-1724.

8

Patolsky, F.; Zheng, G. F.; Hayden, O.; Lakadamyali, M.; Zhuang, X. W.; Lieber, C. M. Electrical detection of single viruses. Proc. Natl. Acad. Sci. USA 2004, 101, 14017-14022.

9

Patolsky, F.; Timko, B. P.; Yu, G. H.; Fang, Y.; Greytak, A. B.; Zheng, G. F.; Lieber, C. M. Detection, stimulation, and inhibition of neuronal signals with high-density nanowire transistor arrays. Science 2006, 313, 1100-1104.

10

Daniels, J. S.; Pourmand, N. Label-free impedance biosensors: Opportunities and challenges. Electroanalysis 2007, 19, 1239-1257.

11

Sharma, R.; Deacon, S. E.; Nowak, D.; George, S. E.; Szymonik, M. P.; Tang, A. A. S.; Tomlinson, D. C.; Davies, A. G.; McPherson, M. J.; Wälti, C. Label-free electrochemical impedance biosensor to detect human interleukin-8 in serum with sub-pg/mL sensitivity. Biosens. Bioelectron. 2016, 80, 607-613.

12

Lin, Z. Y.; Chen, L. F.; Zhang, G. Y.; Liu, Q. D.; Qiu, B.; Cai, Z. W.; Chen, G. N. Label-free aptamer-based electrochemical impedance biosensor for 17β-estradiol. Analyst 2012, 137, 819-822.

13

Medina-Sánchez, M.; Ibarlucea, B.; Pérez, N.; Karnaushenko, D. D.; Weiz, S. M.; Baraban, L.; Cuniberti, G.; Schmidt, O. G. High-performance three-dimensional tubular nanomembrane sensor for DNA detection. Nano Lett. 2016, 16, 4288-4296.

14

Chen, K. I.; Li, B. R.; Chen, Y. T. Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation. Nano Today 2011, 6, 131-154.

15

Liu, S.; Guo, X. F. Carbon nanomaterials field-effect-transistor-based biosensors. NPG Asia Mater. 2012, 4, e23.

16

Schütt, J.; Ibarlucea, B.; Illing, R.; Zörgiebel, F.; Pregl, S.; Nozaki, D.; Weber, W. M.; Mikolajick, T.; Baraban, L.; Cuniberti, G. Compact nanowire sensors probe microdroplets. Nano Lett. 2016, 16, 4991-5000.

17

Karnaushenko, D.; Ibarlucea, B.; Lee, S.; Lin, G.; Baraban, L.; Pregl, S.; Melzer, M.; Makarov, D.; Weber, W. M.; Mikolajick, T. et al. Light weight and flexible high-performance diagnostic platform. Adv. Healthc. Mater. 2015, 4, 1517-1525.

18

Yang, Y. B.; Yang, X. D.; Zou, X. M.; Wu, S. T.; Wan, D.; Cao, A. Y.; Liao, L.; Yuan, Q.; Duan, X. F. Ultrafine graphene nanomesh with large on/off ratio for high-performance flexible biosensors. Adv. Funct. Mater. 2017, 27, 1604096.

19

Yang, Y. B.; Yang, X. D.; Tan, Y. N.; Yuan, Q. Recent progress in flexible and wearable bio-electronics based on nanomaterials. Nano Res. 2017, 10, 1560-1583.

20

Bergveld, P. Development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE Trans. Biomed. Eng. 1970, 17, 70-71.

21

Pregl, S.; Heinzig, A.; Baraban, L.; Cuniberti, G.; Mikolajick, T.; Weber, W. M. Printable parallel arrays of Si nanowire Schottky-barrier-FETs with tunable polarity for complementary logic. IEEE Trans. Nanotechnol. 2016, 15, 549-556.

22

Baraban, L.; Zörgiebel, F.; Pahlke, C.; Baek, E.; Römhildt, L.; Cuniberti, G. Lab on a wire: Application of silicon nanowires for nanoscience and biotechnology. In Nanowire Field Effect Transistors: Principles and Applications; Kim, D. M.; Jeong, Y. H., Eds.; Springer: New York, 2014; pp 241-278.

23

Pregl, S.; Weberk W. M.; Nozaki, D.; Kunstmann, J.; Baraban, B.; Opitz, J.; Mikolajick, T.; Cuniberti, G. Parallel arrays of Schottky barrier nanowire field effect transistors: Nanoscopic effects for macroscopic current output. Nano Res. 2013, 6, 381-388.

24

Namdari, P.; Daraee, H.; Eatemadi, A. Recent advances in silicon nanowire biosensors: Synthesis methods, properties, and applications. Nanoscale Res. Lett. 2016, 11, 406.

25

Shen, M. Y.; Li, B. R.; Li, Y. K. Silicon nanowire field-effect-transistor based biosensors: From sensitive to ultra-sensitive. Biosens. Bioelectron. 2014, 60, 101-111.

26

Stern, E.; Wagner, R.; Sigworth, F. J.; Breaker, R.; Fahmy, T. M.; Reed, M. A. Importance of the Debye screening length on nanowire field effect transistor sensors. Nano Lett. 2007, 7, 3405-3409.

27

Gao, N.; Gao, T.; Yang, X.; Dai, X. C.; Zhou, W.; Zhang, A. Q.; Lieber, C. M. Specific detection of biomolecules in physiological solutions using graphene transistor biosensors. Proc. Natl. Acad. Sci. USA 2016, 113, 14633-14638.

28

Presnova, G.; Presnov, D.; Krupenin, V; Grigorenko, V.; Trifonov, A.; Andreeva, I.; Ignatenko, O.; Egorov, A.; Rubtsova, M. Biosensor based on a silicon nanowire field-effect transistor functionalized by gold nanoparticles for the highly sensitive determination of prostate specific antigen. Biosens. Bioelectron. 2017, 88, 283-289.

29

Krivitsky, V.; Zverzhinetsky, M.; Patolsky, F. Antigen-dissociation from antibody-modified nanotransistor sensor arrays as a direct biomarker detection method in unprocessed biosamples. Nano Lett. 2016, 16, 6272-6281.

30

Ingebrandt, S. Bioelectronics: Sensing beyond the limit. Nat. Nanotechnol. 2015, 10, 734-735.

31

Laborde, C.; Pittino, F.; Verhoeven, H. A.; Lemay, S. G.; Selmi, L.; Jongsma, M. A.; Widdershoven, F. P. Real-time imaging of microparticles and living cells with CMOS nanocapacitor arrays. Nat. Nanotechnol. 2015, 10, 791-795.

32

Knopfmacher, O.; Tarasov, A.; Fu, W. Y.; Wipf, M.; Niesen, B.; Calame, M.; Schönenberger, C. Nernst limit in dual-gated Si-nanowire FET sensors. Nano Lett. 2010, 10, 2268-2274.

33

Chua, L. O. Memristor—The missing circuit element. IEEE Trans. Circuit Theory 1971, 18, 507-519.

34

Strukov, D. B.; Snider, G. S.; Stewart, D. R.; Williams, R. S. The missing memristor found. Nature 2008, 453, 80-83.

35

Ascoli, A.; Slesazeck, S.; Mahne, H.; Tetzlaff, R.; Mikolajick, T. Nonlinear dynamics of a locally-active memristor. IEEE Trans. Circuits Syst. I Regul. Pap. 2015, 62, 1165-1174.

36

Ascoli, A.; Tetzlaff, R.; Chua, L. O.; Strachan, J. P.; Williams, R. S. History erase effect in a non-volatile memristor. IEEE Trans. Circuits Syst. I Regul. Pap. 2016, 63, 389-400.

37

Carrara, S.; Sacchetto, D.; Doucey, M. A.; Baj-Rossi, C.; De Micheli, G.; Leblebici, Y. Memristive-biosensors: A new detection method by using nanofabricated memristors. Sens. Actuators B Chem. 2012, 171-172, 449-457.

38

Tzouvadaki, I.; Jolly, P.; Lu, X. L.; Ingebrandt, S.; de Micheli, G.; Estrela, P.; Carrara, S. Label-free ultrasensitive memristive aptasensor. Nano Lett. 2016, 16, 4472-4476.

39

Chua, L. If it's pinched it's a memristor. In Memristors and Memristive Systems; Tetzlaff, R., Ed.; Springer: New York, 2014; pp 17-90.

40

Puppo, F.; Dave, A.; Doucey, M. A.; Sacchetto, D.; Baj-Rossi, C.; Leblebici, Y.; De Micheli, G.; Carrara, S. Memristive biosensors under varying humidity conditions. IEEE Trans. NanoBioscience 2014, 13, 19-30.

41

Tzouvadaki, I.; Lu, X.; De Micheli, G.; Ingebrandt, S.; Carrara, S. Nano-fabricated memristive biosensors for biomedical applications with liquid and dried samples. In 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, USA, 2016, pp 295-298.

42

Goodchild, S. A.; Dooley, H.; Schoepp, R. J.; Flajnik, M.; Lonsdale, S. G. Isolation and characterisation of Ebolavirus-specific recombinant antibody fragments from murine and shark immune libraries. Mol. Immunol. 2011, 48, 2027-2037.

43

Lucht, A.; Grunow, R.; Möller, P.; Feldmann, H.; Becker, S. Development, characterization and use of monoclonal VP40-antibodies for the detection of Ebola virus. J. Virol. Methods 2003, 111, 21-28.

44

Yanik, A. A.; Huang, M.; Kamohara, O.; Artar, A.; Geisbert, T. M.; Connor, J. H.; Altug, H. An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media. Nano Lett. 2010, 10, 4962-4969.

45

Baca, J. T.; Severns, V.; Lovato, D.; Branch, D. W.; Larson, R. S. Rapid detection of Ebola virus with a reagent-free, point-of-care biosensor. Sensors 2015, 15, 8605-8614.

46

Tsang, M. K.; Ye, W. W.; Wang, G. J.; Li, J. M.; Yang, M.; Hao, J. H. Ultrasensitive detection of Ebola virus oligonucleotide based on upconversion nanoprobe/nanoporous membrane system. ACS Nano 2016, 10, 598-605.

47

Elliott, L. H.; Kiley, M. P.; McCormick, J. B. Descriptive analysis of Ebola virus proteins. Virology 1985, 147, 169-176.

48

Rim, T.; Kim, K.; Kim, S.; Baek, C. K.; Meyyappan, M.; Jeong, Y. H.; Lee, J. S. Improved electrical characteristics of honeycomb nanowire ISFETs. IEEE Electron Device Lett. 2013, 34, 1059-1061.

49

Rim, T.; Meyyappan, M.; Baek, C. K. Optimized operation of silicon nanowire field effect transistor sensors. Nanotechnology 2014, 25, 505501.

50

Marples, R. R.; Wieneke, A. A. Enterotoxins and toxic-shock syndrome toxin-1 in non-enteric staphylococcal disease. Epidemiol. Infect. 1993, 110, 477-488.

51

Kim, K.; Park, C.; Kwon, D.; Kim, D.; Meyyappan, M.; Jeon, S.; Lee, J. S. Silicon nanowire biosensors for detection of cardiac troponin Ⅰ (cTnI) with high sensitivity. Biosens. Bioelectron. 2016, 77, 695-701.

52

Kaushik, A.; Tiwari, S.; Dev Jayant, R.; Marty, A.; Nair, M. Towards detection and diagnosis of Ebola virus disease at point-of-care. Biosens. Bioelectron. 2016, 75, 254-272.

53

Rossi, C. A.; Kearney, B. J.; Olschner, S. P.; Williams, P. L.; Robinson, C. G.; Heinrich, M. L.; Zovanyi, A. M.; Ingram, M. F.; Norwood, D. A.; Schoepp, R. J. Evaluation of ViroCyt® virus counter for rapid filovirus quantitation. Viruses 2015, 7, 857-872.

Nano Research
Pages 1057-1068
Cite this article:
Ibarlucea B, Akbar TF, Kim K, et al. Ultrasensitive detection of Ebola matrix protein in a memristor mode. Nano Research, 2018, 11(2): 1057-1068. https://doi.org/10.1007/s12274-017-1720-2

748

Views

43

Crossref

N/A

Web of Science

50

Scopus

0

CSCD

Altmetrics

Received: 16 April 2017
Revised: 02 June 2017
Accepted: 11 June 2017
Published: 25 July 2017
© Tsinghua University Press and Springer-Verlag GmbH Germany 2017
Return