Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Benefiting from their unique delocalized electronic structure, conjugated polymer-based semiconductors are widely applied in the fields of organic electronics, sensors, and biomedical applications. However, the photocatalytic properties of conjugated polymers have been seldom studied because of their unsuitable band structures. Herein, we creatively demonstrate that the band structures of conjugated polymers are strongly related to their degree of polymerization (DP), offering an effective strategy for the design of metal-free photocatalysts with tunable light absorption properties. Taking poly(3-hexylthiophene) (PHT) as an example, we show that PHT nanofibers with a suitable DP are a novel visible light-driven photocatalyst, which can readily convert molecular oxygen into superoxide ions. Benefiting from the high selectivity of the generated superoxides, the PHT nanofibers display outstanding activity for the aerobic oxidation of amines into imines with nearly 100% conversion and selectivity. This study offers a new strategy for the design of advanced conjugated polymer-based photocatalysts.
Yoon, T. P.; Ischay, M. A.; Du, N. Visible light photocatalysis as a greener approach to photochemical synthesis. Nat. Chem. 2010, 2, 527-532.
Hisatomi, T.; Kubota, J.; Domen, K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 2014, 43, 7520-7535.
Chen, X. B.; Liu, L.; Yu, P. Y.; Mao, S. S. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 2011, 331, 746-750.
Yang, X. J.; Xu, X. M.; Xu, J.; Han, Y. F. Iron oxychloride (FeOCl): An efficient Fenton-like catalyst for producing hydroxyl radicals in degradation of organic contaminants. J. Am. Chem. Soc. 2013, 135, 16058-16061.
Apel, K.; Hirt, K. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 2004, 55, 373-399.
Wang, H.; Yang, X. Z.; Shao, W.; Chen, S. C.; Xie, J. F.; Zhang, X. D.; Wang, J.; Xie, Y. Ultrathin black phosphorus nanosheets for efficient singlet oxygen generation. J. Am. Chem. Soc. 2015, 137, 11376-11382.
Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Visible light photoredox catalysis with transition metal complexes: Applications in organic synthesis. Chem. Rev. 2013, 113, 5322-5363.
Han, C.; Chen, Z.; Zhang, N.; Colmenares, J. C.; Xu, Y. J. Hierarchically CdS decorated 1D ZnO nanorods-2D graphene hybrids: Low temperature synthesis and enhanced photocatalytic performance. Adv. Funct. Mater. 2015, 25, 221-229.
Martin, D. J.; Liu, G. G.; Moniz, S. J. A.; Bi, Y. P.; Beale, A. M.; Ye, J. H.; Tang, J. W. Efficient visible driven photocatalyst, silver phosphate: Performance, understanding and perspective. Chem. Soc. Rev. 2015, 44, 7808-7828.
Zhang, N.; Zhang, Y. H.; Xu, Y. J. Recent progress on graphene-based photocatalysts: Current status and future perspectives. Nanoscale 2012, 4, 5792-5813.
Wang, Y.; Wang, X. C.; Antonietti, M. Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: From photochemistry to multipurpose catalysis to sustainable chemistry. Angew. Chem. , Int. Ed. 2012, 51, 68-89.
Su, F. Z.; Mathew, S. C.; Lipner, G.; Fu, X. Z.; Antonietti, M.; Blechert, S.; Wang, X. C. mpg-C3N4-catalyzed selective oxidation of alcohols using O2 and visible light. J. Am. Chem. Soc. 2010, 132, 16299-16301.
Heinze, J.; Frontana-Uribe, B. A.; Ludwigs, S. Electrochemistry of conducting polymers-persistent models and new concepts. Chem. Rev. 2010, 110, 4724-4771.
Wang, Z. J.; Ghasimi, S.; Landfester, K.; Zhang, K. A. I. Molecular structural design of conjugated microporous poly(benzooxadiazole) networks for enhanced photocatalytic activity with visible light. Adv. Mater. 2015, 27, 6265-6270.
Zhou, Q. Q.; Shi, G. Q. Conducting polymer-based catalysts. J. Am. Chem. Soc. 2016, 138, 2868-2876.
Ghosh, S.; Kouamé, N. A.; Ramos, L.; Remita, S.; Dazzi, A.; Deniset-Besseau, A.; Beaunier, P.; Goubard, F.; Aubert, P. H.; Remita, H. Conducting polymer nanostructures for photocatalysis under visible light. Nat. Mater. 2015, 14, 505-511.
Ghosh, S.; Kouame, N. A.; Remita, S.; Ramos, L.; Goubard, F.; Aubert, P. H.; Dazzi, A.; Deniset-Besseau, A.; Remita, H. Visible-light active conducting polymer nanostructures with superior photocatalytic activity. Sci. Rep. 2015, 5, 18002.
Chen, Y.; Zhang, J. S.; Zhang, M. W.; Wang, X. C. Molecular and textural engineering of conjugated carbon nitride catalysts for selective oxidation of alcohols with visible light. Chem. Sci. 2013, 4, 3244-3248.
Osaka, I.; McCullough, R. D. Advances in molecular design and synthesis of regioregular polythiophenes. Acc. Chem. Res. 2008, 41, 1202-1214.
Dudenko, D.; Kiersnowski, A.; Shu, J.; Pisula, W.; Sebastiani, D.; Spiess, H. W.; Hansen, M. R. A strategy for revealing the packing in semicrystalline π-conjugated polymers: Crystal structure of bulk poly-3-hexyl-thiophene (P3HT). Angew. Chem. , Int. Ed. 2012, 51, 11068-11072.
Khanduyeva, N.; Senkovskyy, V.; Beryozkina, T.; Horecha, M.; Stamm, M.; Uhrich, C.; Riede, M.; Leo, K.; Kiriy, A. Surface engineering using Kumada catalyst-transfer polycondensation (KCTP): Preparation and structuring of poly(3-hexylthiophene)-based graft copolymer brushes. J. Am. Chem. Soc. 2009, 131, 153-161.
Nielsen, C. B.; McCulloch, I. Recent advances in transistor performance of polythiophenes. Prog. Polym. Sci. 2013, 38, 2053-2069.
Sulzbach, H. M.; Schleter, P. V. R.; Jiao, H. J.; Xie, Y. M.; Schaefer, H. F. A [10]annulene isomer may be aromatic, after all! J. Am. Chem. Soc. 1995, 117, 1369-1373.
McCullough, R. D. The chemistry of conducting polythiophenes. Adv. Mater. 1998, 10, 93-116.
Ishibashi, K.; Fujishima, A.; Watanabe, T.; Hashimoto, K. Detection of active oxidative species in TiO2 photocatalysis using the fluorescence technique. Electrochem. Commun. 2000, 2, 207-210.
Bojdys, M. J.; Müller, J. O.; Antonietti, M.; Thomas, A. Ionothermal synthesis of crystalline, condensed, graphitic carbon nitride. Chem. -Eur. J. 2008, 14, 8177-8182.
Riente, P.; Adams, A. M.; Albero, J.; Palomares, E.; Pericàs, M. A. Light-driven organocatalysis using inexpensive, nontoxic Bi2O3 as the photocatalyst. Angew. Chem. , Int. Ed. 2014, 53, 9613-9616.