AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Visible light-driven superoxide generation by conjugated polymers for organic synthesis

Feili Lai1,2Yue Wang2Dandan Li3Xianshun Sun1Juan Peng2Xiaodong Zhang1( )Yupeng Tian3Tianxi Liu2,4( )
Hefei National Laboratory for Physical Science at Microscale Collaborative Innovation Center of Chemistry for Energy MaterialsUniversity of Science and Technology of ChinaHefei230026China
State Key Laboratory of Molecular Engineering of PolymersDepartment of Macromolecular ScienceFudan UniversityShanghai200433China
Department of ChemistryAnhui UniversityHefei230039China
State Key Laboratory of Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620China
Show Author Information

Graphical Abstract

Abstract

Benefiting from their unique delocalized electronic structure, conjugated polymer-based semiconductors are widely applied in the fields of organic electronics, sensors, and biomedical applications. However, the photocatalytic properties of conjugated polymers have been seldom studied because of their unsuitable band structures. Herein, we creatively demonstrate that the band structures of conjugated polymers are strongly related to their degree of polymerization (DP), offering an effective strategy for the design of metal-free photocatalysts with tunable light absorption properties. Taking poly(3-hexylthiophene) (PHT) as an example, we show that PHT nanofibers with a suitable DP are a novel visible light-driven photocatalyst, which can readily convert molecular oxygen into superoxide ions. Benefiting from the high selectivity of the generated superoxides, the PHT nanofibers display outstanding activity for the aerobic oxidation of amines into imines with nearly 100% conversion and selectivity. This study offers a new strategy for the design of advanced conjugated polymer-based photocatalysts.

Electronic Supplementary Material

Download File(s)
nr-11-2-1099_ESM.pdf (2.3 MB)

References

1

Yoon, T. P.; Ischay, M. A.; Du, N. Visible light photocatalysis as a greener approach to photochemical synthesis. Nat. Chem. 2010, 2, 527-532.

2

Hisatomi, T.; Kubota, J.; Domen, K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 2014, 43, 7520-7535.

3

Chen, X. B.; Liu, L.; Yu, P. Y.; Mao, S. S. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 2011, 331, 746-750.

4

Yang, X. J.; Xu, X. M.; Xu, J.; Han, Y. F. Iron oxychloride (FeOCl): An efficient Fenton-like catalyst for producing hydroxyl radicals in degradation of organic contaminants. J. Am. Chem. Soc. 2013, 135, 16058-16061.

5

Apel, K.; Hirt, K. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 2004, 55, 373-399.

6

Wang, H.; Yang, X. Z.; Shao, W.; Chen, S. C.; Xie, J. F.; Zhang, X. D.; Wang, J.; Xie, Y. Ultrathin black phosphorus nanosheets for efficient singlet oxygen generation. J. Am. Chem. Soc. 2015, 137, 11376-11382.

7

Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Visible light photoredox catalysis with transition metal complexes: Applications in organic synthesis. Chem. Rev. 2013, 113, 5322-5363.

8

Han, C.; Chen, Z.; Zhang, N.; Colmenares, J. C.; Xu, Y. J. Hierarchically CdS decorated 1D ZnO nanorods-2D graphene hybrids: Low temperature synthesis and enhanced photocatalytic performance. Adv. Funct. Mater. 2015, 25, 221-229.

9

Martin, D. J.; Liu, G. G.; Moniz, S. J. A.; Bi, Y. P.; Beale, A. M.; Ye, J. H.; Tang, J. W. Efficient visible driven photocatalyst, silver phosphate: Performance, understanding and perspective. Chem. Soc. Rev. 2015, 44, 7808-7828.

10

Zhang, N.; Zhang, Y. H.; Xu, Y. J. Recent progress on graphene-based photocatalysts: Current status and future perspectives. Nanoscale 2012, 4, 5792-5813.

11

Wang, Y.; Wang, X. C.; Antonietti, M. Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: From photochemistry to multipurpose catalysis to sustainable chemistry. Angew. Chem. , Int. Ed. 2012, 51, 68-89.

12

Su, F. Z.; Mathew, S. C.; Lipner, G.; Fu, X. Z.; Antonietti, M.; Blechert, S.; Wang, X. C. mpg-C3N4-catalyzed selective oxidation of alcohols using O2 and visible light. J. Am. Chem. Soc. 2010, 132, 16299-16301.

13

Heinze, J.; Frontana-Uribe, B. A.; Ludwigs, S. Electrochemistry of conducting polymers-persistent models and new concepts. Chem. Rev. 2010, 110, 4724-4771.

14

Wang, Z. J.; Ghasimi, S.; Landfester, K.; Zhang, K. A. I. Molecular structural design of conjugated microporous poly(benzooxadiazole) networks for enhanced photocatalytic activity with visible light. Adv. Mater. 2015, 27, 6265-6270.

15

Zhou, Q. Q.; Shi, G. Q. Conducting polymer-based catalysts. J. Am. Chem. Soc. 2016, 138, 2868-2876.

16

Ghosh, S.; Kouamé, N. A.; Ramos, L.; Remita, S.; Dazzi, A.; Deniset-Besseau, A.; Beaunier, P.; Goubard, F.; Aubert, P. H.; Remita, H. Conducting polymer nanostructures for photocatalysis under visible light. Nat. Mater. 2015, 14, 505-511.

17

Ghosh, S.; Kouame, N. A.; Remita, S.; Ramos, L.; Goubard, F.; Aubert, P. H.; Dazzi, A.; Deniset-Besseau, A.; Remita, H. Visible-light active conducting polymer nanostructures with superior photocatalytic activity. Sci. Rep. 2015, 5, 18002.

18

Chen, Y.; Zhang, J. S.; Zhang, M. W.; Wang, X. C. Molecular and textural engineering of conjugated carbon nitride catalysts for selective oxidation of alcohols with visible light. Chem. Sci. 2013, 4, 3244-3248.

19

Osaka, I.; McCullough, R. D. Advances in molecular design and synthesis of regioregular polythiophenes. Acc. Chem. Res. 2008, 41, 1202-1214.

20

Dudenko, D.; Kiersnowski, A.; Shu, J.; Pisula, W.; Sebastiani, D.; Spiess, H. W.; Hansen, M. R. A strategy for revealing the packing in semicrystalline π-conjugated polymers: Crystal structure of bulk poly-3-hexyl-thiophene (P3HT). Angew. Chem. , Int. Ed. 2012, 51, 11068-11072.

21

Khanduyeva, N.; Senkovskyy, V.; Beryozkina, T.; Horecha, M.; Stamm, M.; Uhrich, C.; Riede, M.; Leo, K.; Kiriy, A. Surface engineering using Kumada catalyst-transfer polycondensation (KCTP): Preparation and structuring of poly(3-hexylthiophene)-based graft copolymer brushes. J. Am. Chem. Soc. 2009, 131, 153-161.

22

Nielsen, C. B.; McCulloch, I. Recent advances in transistor performance of polythiophenes. Prog. Polym. Sci. 2013, 38, 2053-2069.

23

Sulzbach, H. M.; Schleter, P. V. R.; Jiao, H. J.; Xie, Y. M.; Schaefer, H. F. A [10]annulene isomer may be aromatic, after all! J. Am. Chem. Soc. 1995, 117, 1369-1373.

24

McCullough, R. D. The chemistry of conducting polythiophenes. Adv. Mater. 1998, 10, 93-116.

25

Ishibashi, K.; Fujishima, A.; Watanabe, T.; Hashimoto, K. Detection of active oxidative species in TiO2 photocatalysis using the fluorescence technique. Electrochem. Commun. 2000, 2, 207-210.

26

Bojdys, M. J.; Müller, J. O.; Antonietti, M.; Thomas, A. Ionothermal synthesis of crystalline, condensed, graphitic carbon nitride. Chem. -Eur. J. 2008, 14, 8177-8182.

27

Riente, P.; Adams, A. M.; Albero, J.; Palomares, E.; Pericàs, M. A. Light-driven organocatalysis using inexpensive, nontoxic Bi2O3 as the photocatalyst. Angew. Chem. , Int. Ed. 2014, 53, 9613-9616.

Nano Research
Pages 1099-1108
Cite this article:
Lai F, Wang Y, Li D, et al. Visible light-driven superoxide generation by conjugated polymers for organic synthesis. Nano Research, 2018, 11(2): 1099-1108. https://doi.org/10.1007/s12274-017-1729-6

689

Views

18

Crossref

N/A

Web of Science

19

Scopus

1

CSCD

Altmetrics

Received: 02 April 2017
Revised: 13 June 2017
Accepted: 18 June 2017
Published: 10 August 2017
© Tsinghua University Press and Springer-Verlag GmbH Germany 2017
Return