Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Facile in situ growth of highly dispersed palladium on phosphotungstic-acid-encapsulated MIL-100(Fe) for the degradation of pharmaceuticals and personal care products under visible light

Ruowen Liang1Renkun Huang1Shaoming Ying1Xuxu Wang2Guiyang Yan1()Ling Wu2()
Department of ChemistryFujian Province University Key Laboratory of Green Energy and Environment CatalysisNingde Normal UniversityNingde352100China
State Key Laboratory of Photocatalysis on Energy and EnvironmentFuzhou UniversityFuzhou350002China
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

A simple, facile in situ reduction approach is reported for the synthesis of Pd-nanoparticle-decorated phosphotungstic acid (PTA)-MIL-100(Fe) nanocomposites (Pd-H3PW12O40-MIL-100(Fe), denoted Pd-PTA-MIL-100(Fe)). During the in situ synthesis, PTA is encapsulated into the matrix of MIL-100(Fe) and serves as a UV-switchable reducing agent, resulting in highly dispersed Pd NPs. Using the photocatalytic degradation of pharmaceuticals and personal care products as model reactions, the ternary Pd-PTA-MIL-100(Fe) hybrids exhibited enhanced photocatalytic activity compared with their foundation matrices, the binary PTA-MIL-100(Fe) nanocomposite. Based on photoelectrochemical analyses, the improved photocatalytic performance can be attributed to the well-known electronic conductivity of the Pd NPs, the fast electron transport of PTA, the intense visible-light absorption of MIL-100(Fe), and the matched energy levels of the three components: MIL-100(Fe), PTA, and Pd NPs. Importantly, almost no Fe and W ions were leached from the samples during the reaction, demonstrating the photostability of the Pd-PTA-MIL-100(Fe) composite. In addition, possible photocatalytic reactions mechanisms have also been investigated.

Electronic Supplementary Material

Download File(s)
nr-11-2-1109_ESM.pdf (2.5 MB)

References

1

Liu, W. X.; Huang, J. J.; Yang, Q.; Wang, S. J.; Sun, X. M.; Zhang, W. N.; Liu, J. F.; Huo, F. W. Multi-shelled hollow metal-organic frameworks. Angew. Chem. , Int. Ed. 2017, 56, 5512-5516.

2

Lu, G.; Li, S. Z.; Guo, Z.; Farha, O. K.; Hauser, B. G.; Qi, X. Y.; Wang, Y.; Wang, X.; Han, S. Y.; Liu, X. G. et al. Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation. Nat. Chem. 2012, 4, 310-316.

3

Mahata, P.; Madras, G.; Natarajan, S. Novel photocatalysts for the decomposition of organic dyes based on metal-organic framework compounds. J. Phys. Chem. B 2006, 110, 13759-13768.

4

Xamena, F. X. L. I.; Corma, A.; Garcia, H. Applications for metal-organic frameworks (MOFs) as quantum dot semiconductors. J. Phys. Chem. C 2007, 111, 80-85.

5

Wang, F. F.; Huang, Y. J.; Chai, Z. G.; Zeng, M.; Li, Q.; Wang, Y.; Xu, D. S. Photothermal-enhanced catalysis in core-shell plasmonic hierarchical Cu7S4 microsphere@zeolitic imidazole framework-8. Chem. Sci. 2016, 7, 6887-6893.

6

Liang, R. W.; Jing, F. F.; Shen, L. J.; Qin, N.; Wu, L. M@MIL-100(Fe) (M = Au, Pd, Pt) nanocomposites fabricated by a facile photodeposition process: Efficient visible-light photocatalysts for redox reactions in water. Nano Res. 2015, 8, 3237-3249.

7

Falcaro, P.; Ricco, R.; Yazdi, A.; Imaz, I.; Furukawa, S.; Maspoch, D.; Ameloot, R.; Evans, J. D.; Doonan, C. J. Application of metal and metal oxide nanoparticles@MOFs. Coord. Chem. Rev. 2016, 307, 237-254.

8

Yang, Q.; Liu, W. X.; Wang, B. Q.; Zhang, W. N.; Zeng, X. Q.; Zhang, C.; Qin, Y. J.; Sun, X. M.; Wu, T. P.; Liu, J. F. et al. Regulating the spatial distribution of metal nanoparticles within metal-organic frameworks to enhance catalytic efficiency. Nat. Commun. 2017, 8, 14429.

9

Moon, H. R.; Lim, D. W.; Suh, M. P. Fabrication of metal nanoparticles in metal-organic frameworks. Chem. Soc. Rev. 2013, 42, 1807-1824.

10

Esken, D.; Zhang, X. N.; Lebedev, O. I.; Schrödera, F.; Fischer, R. A. Pd@MOF-5: Limitations of gas-phase infiltration and solution impregnation of [Zn4O(bdc)3] (MOF-5) with metal-organic palladium precursors for loading with Pd nanoparticles. J. Mater. Chem. 2009, 19, 1314-1319.

11

Sabo, M.; Henschel, A.; Fröde, H.; Klemm, E.; Kaskel, S. Solution infiltration of palladium into MOF-5: Synthesis, physisorption and catalytic properties. J. Mater. Chem. 2007, 17, 3827-3832.

12

Shen, L. J.; Luo, M. B.; Huang, L. J.; Feng, P. Y.; Wu, L. A Clean and general strategy to decorate a titanium metal-organic framework with noble-metal nanoparticles for versatile photocatalytic applications. Inorg. Chem. 2015, 54, 1191-1193.

13

Sattari, D.; Hill, C. L. Catalytic carbon-halogen bond cleavage chemistry by redox-active polyoxometalates. J. Am. Chem. Soc. 1993, 115, 4649-4657.

14

Zhu, K. K.; Wang, D. H.; Liu, J. Self-assembled materials for catalysis. Nano Res. 2009, 2, 1-29.

15

Bayaguud, A.; Chen, K.; Wei, Y. G. Controllable synthesis of polyoxovanadate-based coordination polymer nanosheets with extended exposure of catalytic sites. Nano Res. 2016, 9, 3858-3867.

16

Liang, R. W.; Chen, R.; Jing, F. F.; Qin, N.; Wu, L. Multifunctional polyoxometalates encapsulated in MIL-100(Fe): Highly efficient photocatalysts for selective transformation under visible light. Dalton Trans. 2015, 44, 18227-18236.

17

Guo, W. W.; Lv, H. J.; Chen, Z. Y.; Sullivan, K. P.; Lauinger, S. M.; Chi, Y. N.; Sumliner, J. M.; Lian, T. Q.; Hill, C. L. Self-assembly of polyoxometalates, Pt nanoparticles and metal-organic frameworks into a hybrid material for synergistic hydrogen evolution. J. Mater. Chem. A 2016, 4, 5952-5957.

18

Horcajada, P.; Surblé, S.; Serre, C.; Hong, D. Y.; Seo, Y. K.; Chang, J. S.; Grenèche, J. M.; Margiolaki, I.; Férey, G. Synthesis and catalytic properties of MIL-100(Fe), an iron(Ⅲ) carboxylate with large pores. Chem. Commun. 2007, 27, 2820-2822.

19

Alsalme, A. M.; Wiper, P. V.; Khimyak, Y. Z.; Kozhevnikova, E. F.; Kozhevnikov, I. V. Solid acid catalysts based on H3PW12O40 heteropoly acid: Acid and catalytic properties at a gas-solid interface. J. Catal. 2010, 276, 181-189.

20

Niu, C. H.; Wu, Y.; Wang, Z. P.; Li, Z.; Li, R. Synthesis and shapes of gold nanoparticles by using transition metal monosubstituted heteropolyanions as photocatalysts and stabilizers. Front. Chem. China 2009, 4, 44-47.

21

Troupis, A.; Hiskia, A.; Papaconstantinou, E. Synthesis of metal nanoparticles by using polyoxometalates as photocatalysts and stabilizers. Angew. Chem. , Int. Ed. 2002, 41, 1911-1914.

22

Liang, R. W.; Luo, S. G.; Jing, F. F.; Shen, L. J.; Qin, N.; Wu, L. A simple strategy for fabrication of Pd@MIL-100(Fe) nanocomposite as a visible-light-driven photocatalyst for the treatment of pharmaceuticals and personal care products (PPCPs). Appl. Catal. B Environ. 2015, 176-177, 240-248.

23

Canioni, R.; Roch-Marchal, C.; Sécheresse, F.; Horcajada, P.; Serre, C.; Hardi-Dan, M.; Férey, G.; Grenèche, J. M.; Lefebvre, F.; Chang, J. S. et al. Stable polyoxometalate insertion within the mesoporous metal organic framework MIL-100(Fe). J. Mater. Chem. 2011, 21, 1226-1233.

24

Pearson, A.; Zheng, H. D.; Kalantar-zadeh, K.; Bhargava, S. K.; Bansal, V. Decoration of TiO2 nanotubes with metal nanoparticles using polyoxometalate as a UV-switchable reducing agent for enhanced visible and solar light photocatalysis. Langmuir 2012, 28, 14470-14475.

25

Pearson, A.; Jani, H.; Kalantar-zadeh, K.; Bhargava, S. K.; Bansal, V. Gold nanoparticle-decorated keggin ions/TiO2 photococatalyst for improved solar light photocatalysis. Langmuir 2011, 27, 6661-6667.

26

Jiao, J. Q.; Qiu, W. D.; Tang, J. G.; Chen, L. P.; Jing, L. Y. Synthesis of well-defined Fe3O4 nanorods/N-doped graphene for lithium-ion batteries. Nano Res. 2016, 9, 1256-1266.

27

Jiang, B. J.; Song, S. Z.; Wang, J. Q.; Xie, Y.; Chu, W. Y.; Li, H. F.; Xu, H.; Tian, C. G.; Fu, H. G. Nitrogen-doped graphene supported Pd@PdO core-shell clusters for C-C coupling reactions. Nano Res. 2014, 7, 1280-1290.

28

Zhang, F. M.; Jin, Y.; Shi, J.; Zhong, Y. J.; Zhu, W. D.; El-Shall, M. S. Polyoxometalates confined in the mesoporous cages of metal-organic framework MIL-100(Fe): Efficient heterogeneous catalysts for esterification and acetalization reactions. Chem. Eng. J. 2015, 269, 236-244.

29

Ramos-Fernandez, E. V.; Pieters, C.; van der Linden, B.; Juan-Alcañiz, J.; Serra-Crespo, P.; Verhoeven, M. W. G. M.; Niemantsverdriet, H.; Gascon, J.; Kapteijn, F. Highly dispersed platinum in metal organic framework NH2-MIL-101(Al) containing phosphotungstic acid-characterization and catalytic performance. J. Catal. 2012, 289, 42-52.

30

Vuong, G. T.; Pham, M. H.; Do, T. O. Synthesis and engineering porosity of a mixed metal Fe2Ni MIL-88B metal-organic framework. Dalton Trans. 2013, 42, 550-557.

31

Qu, X. S.; Guo, Y. H.; Hu, C. W. Preparation and heterogeneous photocatalytic activity of mesoporous H3PW12O40/ZrO2 composites. J. Mol. Catal. A Chem. 2007, 262, 128-135.

32

Xiong, Y. J.; Chen, J. Y.; Wiley, B.; Xia, Y. N.; Yin, Y. D.; Li, Z. Y. Size-dependence of surface plasmon resonance and oxidation for Pd nanocubes synthesized via a seed etching process. Nano Lett. 2005, 5, 1237-1242.

33

Jung, S.; Shuford, K. L.; Park, S. Optical property of a colloidal solution of platinum and palladium nanorods: Localized surface Plasmon resonance. J. Phys. Chem. C 2011, 115, 19049-19053.

34

Zhang, Y. H.; Zhang, N.; Tang, Z. R.; Xu, Y. J. A unique silk mat-like structured Pd/CeO2 as an efficient visible light photocatalyst for green organic transformation in water. ACS Sustainable Chem. Eng. 2013, 1, 1258-1266.

35

Shoaib, A.; Ji, M. W.; Qian, H. M.; Liu, J. J.; Xu, M.; Zhang, J. T. Noble metal nanoclusters and their in situ calcination to nanocrystals: Precise control of their size and interface with TiO2 nanosheets and their versatile catalysis applications. Nano Res. 2016, 9, 1763-1774.

36

Zheng, Z. K.; Huang, B. B.; Qin, X. Y.; Zhang, X. Y.; Dai, Y.; Whangbo, M. H. Facile in situ synthesis of visible-light plasmonic photocatalysts M@TiO2 (M = Au, Pt, Ag) and evaluation of their photocatalytic oxidation of benzene to phenol. J. Mater. Chem. 2011, 21, 9079-9087.

37

Konstantinou, I. K.; Albanis, T. A. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: Kinetic and mechanistic investigations: A review. Appl. Catal. B Environ. 2004, 49, 1-14.

38

Spãtaru, N.; Sarada, B. V.; Tryk, D. A.; Fujishima, A. Anodic voltammetry of xanthine, theophylline, theobromine and caffeine at conductive diamond electrodes and its analytical application. Electroanalysis 2002, 14, 721-728.

39

Mestre, A. S.; Pires, J.; Nogueira, J. M. F.; Carvalho, A. P. Activated carbons for the adsorption of ibuprofen. Carbon 2007, 45, 1979-1988.

40

Yin, X.; Wang, B.; He, M.; He, T. Facile synthesis of ZnO nanocrystals via a solid state reaction for high performance plastic dye-sensitized solar cells. Nano Res. 2012, 5, 1-10.

41

Dubey, N.; Labhsetwar, N. K.; Devotta, S.; Rayalu, S. S. Hydrogen evolution by water splitting using novel composite zeolite-based photocatalyst. Catal. Today 2007, 129, 428-434.

Nano Research
Pages 1109-1123
Cite this article:
Liang R, Huang R, Ying S, et al. Facile in situ growth of highly dispersed palladium on phosphotungstic-acid-encapsulated MIL-100(Fe) for the degradation of pharmaceuticals and personal care products under visible light. Nano Research, 2018, 11(2): 1109-1123. https://doi.org/10.1007/s12274-017-1730-0
Metrics & Citations  
Article History
Copyright
Return