Graphical Abstract

A simple, facile in situ reduction approach is reported for the synthesis of Pd-nanoparticle-decorated phosphotungstic acid (PTA)-MIL-100(Fe) nanocomposites (Pd-H3PW12O40-MIL-100(Fe), denoted Pd-PTA-MIL-100(Fe)). During the in situ synthesis, PTA is encapsulated into the matrix of MIL-100(Fe) and serves as a UV-switchable reducing agent, resulting in highly dispersed Pd NPs. Using the photocatalytic degradation of pharmaceuticals and personal care products as model reactions, the ternary Pd-PTA-MIL-100(Fe) hybrids exhibited enhanced photocatalytic activity compared with their foundation matrices, the binary PTA-MIL-100(Fe) nanocomposite. Based on photoelectrochemical analyses, the improved photocatalytic performance can be attributed to the well-known electronic conductivity of the Pd NPs, the fast electron transport of PTA, the intense visible-light absorption of MIL-100(Fe), and the matched energy levels of the three components: MIL-100(Fe), PTA, and Pd NPs. Importantly, almost no Fe and W ions were leached from the samples during the reaction, demonstrating the photostability of the Pd-PTA-MIL-100(Fe) composite. In addition, possible photocatalytic reactions mechanisms have also been investigated.
Liu, W. X.; Huang, J. J.; Yang, Q.; Wang, S. J.; Sun, X. M.; Zhang, W. N.; Liu, J. F.; Huo, F. W. Multi-shelled hollow metal-organic frameworks. Angew. Chem. , Int. Ed. 2017, 56, 5512-5516.
Lu, G.; Li, S. Z.; Guo, Z.; Farha, O. K.; Hauser, B. G.; Qi, X. Y.; Wang, Y.; Wang, X.; Han, S. Y.; Liu, X. G. et al. Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation. Nat. Chem. 2012, 4, 310-316.
Mahata, P.; Madras, G.; Natarajan, S. Novel photocatalysts for the decomposition of organic dyes based on metal-organic framework compounds. J. Phys. Chem. B 2006, 110, 13759-13768.
Xamena, F. X. L. I.; Corma, A.; Garcia, H. Applications for metal-organic frameworks (MOFs) as quantum dot semiconductors. J. Phys. Chem. C 2007, 111, 80-85.
Wang, F. F.; Huang, Y. J.; Chai, Z. G.; Zeng, M.; Li, Q.; Wang, Y.; Xu, D. S. Photothermal-enhanced catalysis in core-shell plasmonic hierarchical Cu7S4 microsphere@zeolitic imidazole framework-8. Chem. Sci. 2016, 7, 6887-6893.
Liang, R. W.; Jing, F. F.; Shen, L. J.; Qin, N.; Wu, L. M@MIL-100(Fe) (M = Au, Pd, Pt) nanocomposites fabricated by a facile photodeposition process: Efficient visible-light photocatalysts for redox reactions in water. Nano Res. 2015, 8, 3237-3249.
Falcaro, P.; Ricco, R.; Yazdi, A.; Imaz, I.; Furukawa, S.; Maspoch, D.; Ameloot, R.; Evans, J. D.; Doonan, C. J. Application of metal and metal oxide nanoparticles@MOFs. Coord. Chem. Rev. 2016, 307, 237-254.
Yang, Q.; Liu, W. X.; Wang, B. Q.; Zhang, W. N.; Zeng, X. Q.; Zhang, C.; Qin, Y. J.; Sun, X. M.; Wu, T. P.; Liu, J. F. et al. Regulating the spatial distribution of metal nanoparticles within metal-organic frameworks to enhance catalytic efficiency. Nat. Commun. 2017, 8, 14429.
Moon, H. R.; Lim, D. W.; Suh, M. P. Fabrication of metal nanoparticles in metal-organic frameworks. Chem. Soc. Rev. 2013, 42, 1807-1824.
Esken, D.; Zhang, X. N.; Lebedev, O. I.; Schrödera, F.; Fischer, R. A. Pd@MOF-5: Limitations of gas-phase infiltration and solution impregnation of [Zn4O(bdc)3] (MOF-5) with metal-organic palladium precursors for loading with Pd nanoparticles. J. Mater. Chem. 2009, 19, 1314-1319.
Sabo, M.; Henschel, A.; Fröde, H.; Klemm, E.; Kaskel, S. Solution infiltration of palladium into MOF-5: Synthesis, physisorption and catalytic properties. J. Mater. Chem. 2007, 17, 3827-3832.
Shen, L. J.; Luo, M. B.; Huang, L. J.; Feng, P. Y.; Wu, L. A Clean and general strategy to decorate a titanium metal-organic framework with noble-metal nanoparticles for versatile photocatalytic applications. Inorg. Chem. 2015, 54, 1191-1193.
Sattari, D.; Hill, C. L. Catalytic carbon-halogen bond cleavage chemistry by redox-active polyoxometalates. J. Am. Chem. Soc. 1993, 115, 4649-4657.
Zhu, K. K.; Wang, D. H.; Liu, J. Self-assembled materials for catalysis. Nano Res. 2009, 2, 1-29.
Bayaguud, A.; Chen, K.; Wei, Y. G. Controllable synthesis of polyoxovanadate-based coordination polymer nanosheets with extended exposure of catalytic sites. Nano Res. 2016, 9, 3858-3867.
Liang, R. W.; Chen, R.; Jing, F. F.; Qin, N.; Wu, L. Multifunctional polyoxometalates encapsulated in MIL-100(Fe): Highly efficient photocatalysts for selective transformation under visible light. Dalton Trans. 2015, 44, 18227-18236.
Guo, W. W.; Lv, H. J.; Chen, Z. Y.; Sullivan, K. P.; Lauinger, S. M.; Chi, Y. N.; Sumliner, J. M.; Lian, T. Q.; Hill, C. L. Self-assembly of polyoxometalates, Pt nanoparticles and metal-organic frameworks into a hybrid material for synergistic hydrogen evolution. J. Mater. Chem. A 2016, 4, 5952-5957.
Horcajada, P.; Surblé, S.; Serre, C.; Hong, D. Y.; Seo, Y. K.; Chang, J. S.; Grenèche, J. M.; Margiolaki, I.; Férey, G. Synthesis and catalytic properties of MIL-100(Fe), an iron(Ⅲ) carboxylate with large pores. Chem. Commun. 2007, 27, 2820-2822.
Alsalme, A. M.; Wiper, P. V.; Khimyak, Y. Z.; Kozhevnikova, E. F.; Kozhevnikov, I. V. Solid acid catalysts based on H3PW12O40 heteropoly acid: Acid and catalytic properties at a gas-solid interface. J. Catal. 2010, 276, 181-189.
Niu, C. H.; Wu, Y.; Wang, Z. P.; Li, Z.; Li, R. Synthesis and shapes of gold nanoparticles by using transition metal monosubstituted heteropolyanions as photocatalysts and stabilizers. Front. Chem. China 2009, 4, 44-47.
Troupis, A.; Hiskia, A.; Papaconstantinou, E. Synthesis of metal nanoparticles by using polyoxometalates as photocatalysts and stabilizers. Angew. Chem. , Int. Ed. 2002, 41, 1911-1914.
Liang, R. W.; Luo, S. G.; Jing, F. F.; Shen, L. J.; Qin, N.; Wu, L. A simple strategy for fabrication of Pd@MIL-100(Fe) nanocomposite as a visible-light-driven photocatalyst for the treatment of pharmaceuticals and personal care products (PPCPs). Appl. Catal. B Environ. 2015, 176-177, 240-248.
Canioni, R.; Roch-Marchal, C.; Sécheresse, F.; Horcajada, P.; Serre, C.; Hardi-Dan, M.; Férey, G.; Grenèche, J. M.; Lefebvre, F.; Chang, J. S. et al. Stable polyoxometalate insertion within the mesoporous metal organic framework MIL-100(Fe). J. Mater. Chem. 2011, 21, 1226-1233.
Pearson, A.; Zheng, H. D.; Kalantar-zadeh, K.; Bhargava, S. K.; Bansal, V. Decoration of TiO2 nanotubes with metal nanoparticles using polyoxometalate as a UV-switchable reducing agent for enhanced visible and solar light photocatalysis. Langmuir 2012, 28, 14470-14475.
Pearson, A.; Jani, H.; Kalantar-zadeh, K.; Bhargava, S. K.; Bansal, V. Gold nanoparticle-decorated keggin ions/TiO2 photococatalyst for improved solar light photocatalysis. Langmuir 2011, 27, 6661-6667.
Jiao, J. Q.; Qiu, W. D.; Tang, J. G.; Chen, L. P.; Jing, L. Y. Synthesis of well-defined Fe3O4 nanorods/N-doped graphene for lithium-ion batteries. Nano Res. 2016, 9, 1256-1266.
Jiang, B. J.; Song, S. Z.; Wang, J. Q.; Xie, Y.; Chu, W. Y.; Li, H. F.; Xu, H.; Tian, C. G.; Fu, H. G. Nitrogen-doped graphene supported Pd@PdO core-shell clusters for C-C coupling reactions. Nano Res. 2014, 7, 1280-1290.
Zhang, F. M.; Jin, Y.; Shi, J.; Zhong, Y. J.; Zhu, W. D.; El-Shall, M. S. Polyoxometalates confined in the mesoporous cages of metal-organic framework MIL-100(Fe): Efficient heterogeneous catalysts for esterification and acetalization reactions. Chem. Eng. J. 2015, 269, 236-244.
Ramos-Fernandez, E. V.; Pieters, C.; van der Linden, B.; Juan-Alcañiz, J.; Serra-Crespo, P.; Verhoeven, M. W. G. M.; Niemantsverdriet, H.; Gascon, J.; Kapteijn, F. Highly dispersed platinum in metal organic framework NH2-MIL-101(Al) containing phosphotungstic acid-characterization and catalytic performance. J. Catal. 2012, 289, 42-52.
Vuong, G. T.; Pham, M. H.; Do, T. O. Synthesis and engineering porosity of a mixed metal Fe2Ni MIL-88B metal-organic framework. Dalton Trans. 2013, 42, 550-557.
Qu, X. S.; Guo, Y. H.; Hu, C. W. Preparation and heterogeneous photocatalytic activity of mesoporous H3PW12O40/ZrO2 composites. J. Mol. Catal. A Chem. 2007, 262, 128-135.
Xiong, Y. J.; Chen, J. Y.; Wiley, B.; Xia, Y. N.; Yin, Y. D.; Li, Z. Y. Size-dependence of surface plasmon resonance and oxidation for Pd nanocubes synthesized via a seed etching process. Nano Lett. 2005, 5, 1237-1242.
Jung, S.; Shuford, K. L.; Park, S. Optical property of a colloidal solution of platinum and palladium nanorods: Localized surface Plasmon resonance. J. Phys. Chem. C 2011, 115, 19049-19053.
Zhang, Y. H.; Zhang, N.; Tang, Z. R.; Xu, Y. J. A unique silk mat-like structured Pd/CeO2 as an efficient visible light photocatalyst for green organic transformation in water. ACS Sustainable Chem. Eng. 2013, 1, 1258-1266.
Shoaib, A.; Ji, M. W.; Qian, H. M.; Liu, J. J.; Xu, M.; Zhang, J. T. Noble metal nanoclusters and their in situ calcination to nanocrystals: Precise control of their size and interface with TiO2 nanosheets and their versatile catalysis applications. Nano Res. 2016, 9, 1763-1774.
Zheng, Z. K.; Huang, B. B.; Qin, X. Y.; Zhang, X. Y.; Dai, Y.; Whangbo, M. H. Facile in situ synthesis of visible-light plasmonic photocatalysts M@TiO2 (M = Au, Pt, Ag) and evaluation of their photocatalytic oxidation of benzene to phenol. J. Mater. Chem. 2011, 21, 9079-9087.
Konstantinou, I. K.; Albanis, T. A. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: Kinetic and mechanistic investigations: A review. Appl. Catal. B Environ. 2004, 49, 1-14.
Spãtaru, N.; Sarada, B. V.; Tryk, D. A.; Fujishima, A. Anodic voltammetry of xanthine, theophylline, theobromine and caffeine at conductive diamond electrodes and its analytical application. Electroanalysis 2002, 14, 721-728.
Mestre, A. S.; Pires, J.; Nogueira, J. M. F.; Carvalho, A. P. Activated carbons for the adsorption of ibuprofen. Carbon 2007, 45, 1979-1988.
Yin, X.; Wang, B.; He, M.; He, T. Facile synthesis of ZnO nanocrystals via a solid state reaction for high performance plastic dye-sensitized solar cells. Nano Res. 2012, 5, 1-10.
Dubey, N.; Labhsetwar, N. K.; Devotta, S.; Rayalu, S. S. Hydrogen evolution by water splitting using novel composite zeolite-based photocatalyst. Catal. Today 2007, 129, 428-434.