AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Aqueous and mechanical exfoliation, unique properties, and theoretical understanding of MoO3 nanosheets made from free-standing α-MoO3 crystals: Raman mode softening and absorption edge blue shift

Hongfei Liu1( )Yongqing Cai2Mingyong Han1Shifeng Guo1Ming Lin1Meng Zhao1Yongwei Zhang2Dongzhi Chi1
Institute of Materials Research and Engineering (IMRE)A*STAR (Agency for ScienceTechnology and Research)2 Fusionopolis WaySingapore138634Singapore
Institute of High Performance Computing (IHPC)A*STAR (Agency for ScienceTechnology and Research)1 Fusionopolis WaySingapore138632Singapore
Show Author Information

Graphical Abstract

Abstract

Crystalline α-MoO3 belts consisting of nanosheets stacked along their [010] axes were synthesized via thermal vapor transport of MoO3 powders at elevated temperatures. The MoO3 belts were millimeters in length along their [001] axes and tens to hundreds of micrometers in width along their [100] axes. Mechanical and aqueous exfoliations of the belts to form two-dimensional (2D) nanosheets were processed via the scotch-tape and bovine serum albumin (BSA) assisted methods, respectively. Upon scotch-tape exfoliation, the Raman features of MoO3 exhibited monotonic decreases in intensity as the thickness was gradually fell to approach that of a 2D nanosheet. Most Raman features eventually disappeared when a monolayer nanosheet was produced, except for the Mo–O–Mo stretching mode (Ag) at ~818 cm-1, which was accompanied by mode-softening of up to 5 cm-1. This mode softening, hitherto not reported for 2D α-MoO3 nanosheets, can be attributed to lattice relaxations that are validated here via theoretical density functional perturbation theory calculations. The BSA-assisted exfoliation products exhibited a blueshift in the α-MoO3 nanosheet absorption edge; they also revealed an absorption peak at 3.98 eV that can be attributed to their intrinsic exciton absorptions. These observations, together with the facile synthesis of high-purity α-MoO3 crystals, illuminate the possibility of further 2D α-MoO3 nanosheet production and lattice dynamic studies.

Electronic Supplementary Material

Download File(s)
12274_2017_1733_MOESM1_ESM.pdf (1.4 MB)

References

1

Gai, P. L. Dynamic studies of metal oxide catalysts: MoO3. Phil. Mag. A 1981, 43, 841-855.

2

Barber, S.; Booth, J.; Pyke, D. R.; Reid, R.; Tilley, R. J. D. The influence of crystallographic shear planes on the behavior of molybdenum-tungsten oxide catalysts for the selective oxidation of propene. J. Catal. 1982, 77, 180-191.

3

Li, Z. C.; Li, Y.; Zhan, E. S.; Ta, N.; Shen, W. J. Morphology- controlled synthesis of α-MoO3 nanomaterials for ethanol oxidation. J. Mater. Chem. A 2013, 1, 15370-15376.

4

Balendhran, S.; Walia, S.; Nili, H.; Ou, J. Z.; Zhuiykov, S.; Kaner, R. B.; Sriram, S.; Bhaskaran, M.; Kalantar-zadeh, K. Two-dimensional molybdenum trioxide and dichalcogenides. Adv. Funct. Mater. 2013, 23, 3952-3970.

5

Zhuiykov, S. Nanostructured Semiconductor Oxides for the Next Generation of Electronics and Functional Devices; Woodhead Publishing: Cambridge, 2014.

6

Wang, D.; Li, J. N.; Zhou, Y.; Xu, D. H.; Xiong, X.; Peng, R. W.; Wang, M. Van der Waals epitaxy of ultrathin α-MoO3 sheets on mica substrate with single-unit-cell thickness. Appl. Phys. Lett. 2016, 108, 053107.

7

Yano, T.; Yoshida, K.; Hayamizu, Y.; Hayashi, T.; Ohuchi, F.; Hara, M. Probing edge-activated resonant Raman scattering from mechanically exfoliated 2D MoO3 nanolayers. 2D Mater. 2015, 2, 035004.

8

Liu, H. F.; Wong, S. L.; Chi, D. Z. CVD growth of MoS2- based two-dimensional materials. Chem. Vap. Deposition 2015, 21, 241-259.

9

Lajaunie, L.; Boucher, F.; Dessapt, R.; Moreau, P. Strong anisotropic influence of local-field effects on the dielectric response of α-MoO3. Phys. Rev. B 2013, 88, 115141.

10

Kalantar-zadeh, K.; Tang, J. S.; Wang, M. S.; Wang, K. L.; Shailos, A.; Galatsis, K.; Kojima, R.; Strong, V.; Lech, A.; Wlodarski, W. et al. Synthesis of nanometre-thick MoO3 sheets. Nanoscale 2010, 2, 429-433.

11

Illyaskutty, N.; Sreedhar, S.; Kumar, G. S.; Kohler, H.; Schwotzer, M.; Natzeck, C.; Pillai, V. P. M. Alteration of architecture of MoO3 nanostructures on arbitrary substrates: Growth kinetics, spectroscopic and gas sensing properties. Nanoscale 2014, 6, 13882-13894.

12

Song, L. X.; Xia, J.; Dang, Z.; Yang, J.; Wang, L. B.; Chen, J. Formation, structure and physical properties of a series of α-MoO3 nanocrystals: From 3D to 1D and 2D. CrystEngComm 2012, 14, 2675-2682.

13

Pukird, S.; Chaiyo, P.; Thumthan, O.; Sumran, S.; Chamninok, P.; Min, B. K.; Kim, S. J.; An, K. S. Synthesis and characterization of uniformly-aligned MoO3 nanobelts. In Proceedings of the International Conference on Advanced Material Science and Environmental Engineering (AMSEE 2016), Chiang Mai, Thailand, 2016, pp41-43.

14

Senthilkumar, R.; Anandhababu, G.; Mahalingam, T.; Ravi, G. Photoelectrochemical study of MoO3 assorted morphology films formed by thermal evaporation. J. Energy Chem. 2016, 25, 798-804.

15

Liu, H. F.; Chua, S. J.; Hu, G. X.; Gong, H.; Xiang, N. Effects of substrate on the structure and orientation of ZnO thin film grown by rf-magnetron sputtering. J. Appl. Phys. 2007, 102, 083529.

16

Liu, H. F.; Chua, S. J.; Chi, D. Z. Effects of temperature and LT-ZnO template on structural and optical properties of thermal-evaporation deposited ZnO submicron crystals. Mater. Lett. 2012, 72, 71-73.

17

Kurtoglu, M. E.; Longenbach, T.; Gogotsi, Y. Synthesis of quasi-oriented α-MoO3 nanobelts and nanoplatelets on TiO2 coated glass. J. Mater. Chem. 2011, 21, 7931-7936.

18

Zheng, Q. H.; Huang, J.; Cao, S. L.; Gao, H. L. A flexible ultraviolet photodetector based on single crystalline MoO3 nanosheets. J. Mater. Chem. C 2015, 3, 7469-7475.

19

Lupan, O.; Trofim, V.; Cretu, V.; Stamov, I.; Syrbu, N. N.; Tiginyanu, I.; Mishra, Y. K.; Adelung, R. Investigation of optical properties and electronic transitions in bulk and nano-microribbons of molybdenum trioxide. J. Phys. D Appl. Phys. 2014, 47, 085302.

20

Guan, G. J.; Zhang, S. Y.; Liu, S. H.; Cai, Y. Q.; Low, M.; Teng, C. P.; Phang, I. Y.; Cheng, Y.; Duei, K. L.; Srinivasan, B. M. et al. Protein induces layer-by-layer exfoliation of transition metal dichalcogenides. J. Am. Chem. Soc. 2015, 137, 6152-6155.

21

Smith, R. L. The structural evolution of the MoO3 (010) surface during reduction and oxidation reactions. Ph. D. Dissertation, Carnegie Mellon University, Pittsburgh, PA, USA, 1998.

22

Swanepoel, R. Determination of the thickness and optical constants of amorphous silicon. J. Phys. E Sci. Instrum. 1983, 16, 1214-1222.

23

Illcan, S.; Caglar, M.; Caglar, Y. Determination of the thickness and optical constants of transparent indium-doped ZnO thin films by the envelope method. Mater. Sci. Poland 2007, 25, 709-718.

24

Liu, H. F.; Chi, D. Z. Magnetron-sputter deposition of Fe3S4 thin films and their conversion into pyrite (FeS2) by thermal sulfurization for photovoltaic applications. J. Vac. Sci. Technol. A 2012, 30, 04D102.

25

Liu, H. F.; Antwi, K. K. A.; Wang, Y. D.; Ong, L. T.; Chua, S. J.; Chi, D. Z. Atomic layer deposition of crystalline Bi2O3 thin films and their conversion into Bi2S3 by thermal vapor sulfurization. RSC Adv. 2014, 4, 58724-58731.

26

Dieterle, M.; Weinberg G.; Mestl, G. Raman spectroscopy of molybdenum oxides Part I. Structural characterization of oxygen defects in MoO3-x by DR UV/VIS, Raman spectroscopy and X-ray diffraction. Phys. Chem. Chem. Phys. 2002, 4, 812-821.

27

Inzani, K.; Grande, T.; Vullum-Bruer, F.; Selbach, S. M. A van der Waals density functional study of MoO3 and its oxygen vacancies. J. Phys. Chem. C 2016, 120, 8959-8968.

28

Carcia, P. F.; McCarron Ⅲ, E. M. Synthesis and properties of thin film polymorphs of molybdenum trioxide. Thin Solid Films 1987, 155, 53-63.

29

Sharma, R. K.; Reddy, G. B. Synthesis and characterization of α-MoO3 microspheres packed with nanoflakes. J. Phys. D Appl. Phys. 2014, 47, 065306.

30

Sharma, R. K.; Reddy, G. B. Controlled growth of vertically aligned MoO3 nanoflakes by plasma assisted paste sublimation process. J. Appl. Phys. 2013, 114, 184310.

31

Liu, D.; Lei, W. W.; Hao, J.; Liu, D. D.; Liu, B. B.; Wang, X.; Chen, X. H.; Cui, Q. L.; Zou, G. T.; Liu, J. et al. High- pressure Raman scattering and X-ray diffraction of phase transitions in MoO3. J. Appl. Phys. 2009, 105, 023513.

32

Silveira, J. V.; Vieira, L. L.; Filho, J. M.; Sampaio, A. J. C.; Alves, O. L.; Filho, A. G. S. Temperature-dependent Raman spectroscopy study in MoO3 nanoribbons. J. Raman Spectrosc. 2012, 43, 1407-1412.

33

Yan, B.; Zheng, Z.; Zhang, J. X.; Gong, H.; Shen, Z. X.; Huang, W.; Yu, T. Orientation controllable growth of MoO3 nanoflakes: Micro-Raman, field emission, and birefringence properties. J. Phys. Chem. C 2009, 113, 20259-20263.

34

Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I. et al. Quantum espresso: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 2009, 21, 395502.

35

Liu, H. F.; Antwi, K. K. A.; Ying, J. F.; Chua, S.; Chi, D. Z. Towards large area and continuous MoS2 atomic layers via vapor-phase growth: Thermal vapor sulfurization. Nanotechnology 2014, 25, 405702.

36

Lee, C.; Yan, H. G.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 2010, 4, 2695-2700.

37

Liu, H. F.; Chua, S. J. Effects of low-temperature-buffer, rf-power, and annealing on structural and optical properties of ZnO/Al2O3(0001) thin films grown by rf-magnetron sputtering. J. Appl. Phys. 2009, 106, 023511.

38

Liu, H. F.; Antwi, K. K. A.; Chua, S.; Chi, D. Z. Vapor- phase growth and characterization of Mo1-xWxS2 (0 ≤ x ≤ 1) atomic layers on 2-inch sapphire substrates. Nanoscale 2014, 6, 624-629.

39

Liu, H. F.; Chi, D. Z. Dispersive growth and laser-induced rippling of large-area single-layer MoS2 nanosheets by CVD on c-plane sapphire substrate. Sci. Rep. 2015, 5, 11756.

40

Ji, F. X.; Ren, X. P.; Zheng, X. Y.; Liu, Y. C.; Pang, L. Q.; Jiang, J. X.; Liu, S. Z. 2D-MoO3 nanosheets for superior gas sensors. Nanoscale 2016, 8, 8696-8703.

Nano Research
Pages 1193-1203
Cite this article:
Liu H, Cai Y, Han M, et al. Aqueous and mechanical exfoliation, unique properties, and theoretical understanding of MoO3 nanosheets made from free-standing α-MoO3 crystals: Raman mode softening and absorption edge blue shift. Nano Research, 2018, 11(3): 1193-1203. https://doi.org/10.1007/s12274-017-1733-x

770

Views

26

Crossref

N/A

Web of Science

25

Scopus

0

CSCD

Altmetrics

Received: 09 May 2017
Revised: 06 June 2017
Accepted: 16 June 2017
Published: 02 February 2018
© Tsinghua University Press and Springer-Verlag GmbH Germany 2017
Return