Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Multimodal bioimaging based on gold nanorod and carbon dot nanohybrids as a novel tool for atherosclerosis detection

Xiaojing Liu1Luting Liu1Xiujie Hu1Shuyun Zhou1Rinat Ankri2Dror Fixler2()Zheng Xie1()
Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and ChemistryChinese Academy of SciencesBeijing100190China
Faculty of Engineering and Institute of Nanotechnology and Advanced MaterialsBar-Ilan UniversityRamat-Gan52900Israel
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

Advanced biocompatible and robust platforms equipped with diverse properties are highly required in biomedical imaging applications for the early detection of atherosclerotic vascular disease and cancers. Designing nanohybrids composed of noble metals and fluorescent materials is a new way to perform multimodal imaging to overcome the limitations of single-modality counterparts. Herein, we propose the novel design of a multimodal contrast agent; namely, an enhanced nanohybrid comprising gold nanorods (GNRs) and carbon dots (CDs) with silica (SiO2) as a bridge. The nanohybrid (GNR@SiO2@CD) construction is based on covalent bonding between SiO2 and the silane-functionalized CDs, which links the GNRs with the CDs to form typical core–shell units. The novel structure not only retains and even highly improves the optical properties of the GNRs and CDs, but also possesses superior imaging performance in both diffusion reflection (DR) and fluorescence lifetime imaging microscopy (FLIM) measurements compared with bare GNRs or fluorescence dyes and CDs. The superior bioimaging properties of the GNR@SiO2@CD nanohybrids were successfully exploited for in vitro DR and FLIM measurements of macrophages within tissue-like phantoms, paving the way toward a theranostic contrast agent for atherosclerosis and cancer.

Electronic Supplementary Material

Download File(s)
12274_2017_1739_MOESM1_ESM.pdf (807.7 KB)

References

1

Jin, Y. D.; Jia, C. X.; Huang, S. -W.; O'Donnell, M.; Gao, X. H. Multifunctional nanoparticles as coupled contrast agents. Nat. Commun. 2010, 1, 41.

2

Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005, 307, 538-544.

3

Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Synthesis and characterization of monodisperse nanocrystals and close- packed nanocrystal assemblies. Annu. Rev. Mater. Sci. 2000, 30, 545-610.

4

Niemeyer, C. M. Nanoparticles, proteins, and nucleic acids: Biotechnology meets materials science. Angew. Chem., Int. Ed. 2001, 40, 4128-4158.

5

Kobayashi, H.; Koyama, Y.; Barrett, T.; Hama, Y.; Regino, C. A. S.; Shin, I. S.; Jang, B. -S.; Le, N.; Paik, C. H.; Choyke, P. L. et al. Multimodal nanoprobes for radionuclide and five-color near-infrared optical lymphatic imaging. ACS Nano 2007, 1, 258-264.

6

Baker, M. Whole-animal imaging: The whole picture. Nature 2010, 463, 977-980.

7

Jain, P. K.; El-Sayed, I. H.; El-Sayed, M. A. Au nanoparticles target cancer. Nano Today 2007, 2, 18-29.

8

Tong, L.; Wei, Q. S.; Wei, A.; Cheng, J. X. Gold nanorods as contrast agents for biological imaging: Optical properties, surface conjugation and photothermal effects. Photochem. Photobiol. 2009, 85, 21-32.

9

Fixler, D.; Ankri, R. Subcutaneous gold nanorods detection with diffusion reflection measurement. J. Biomed. Opt. 2013, 18, 061226.

10

Fixler, D.; Zalevsky, Z. In vivo tumor detection using polarization and wavelength reflection characteristics of gold nanorods. Nano. Lett. 2013, 13, 6292-6296.

11

Ankri, R.; Duadi, H.; Motiei, M.; Fixler, D. In-vivo tumor detection using diffusion reflection measurements of targeted gold nanorods—A quantitative study. J. Biophot. 2012, 5, 263-273.

12

Ankri, R.; Meiri, A.; Lau, S. I.; Motiei, M.; Popovtzer, R.; Fixler, D. Intercoupling surface plasmon resonance and diffusion reflection measurements for real-time cancer detection. J. Biophot. 2013, 6, 188-196.

13

Ankri, R.; Leshem-Lev, D.; Fixler, D.; Popovtzer, R.; Motiei, M.; Kornowski, R.; Hochhauser, E.; Lev, E. I. Gold nanorods as absorption contrast agents for the noninvasive detection of arterial vascular disorders based on diffusion reflection measurements. Nano Lett. 2014, 14, 2681-2687.

14

Becker, W. Fluorescence lifetime imaging-techniques and applications. J. Microsc. 2012, 247, 119-136.

15

Fixler, D.; Nayhoz, T.; Ray, K. Diffusion reflection and fluorescence lifetime imaging microscopy study of fluorophore-conjugated gold nanoparticles or nanorods in solid phantoms. ACS Photonics 2014, 1, 900-905.

16

van Munster, E. B.; Gadella, T. W. J. Fluorescence lifetime imaging microscopy (FLIM). In Microscopy Techniques. Rietdorf, J., Ed.; Springer: Berlin Heidelberg, 2005; pp 143-175.

17

Fixler, D.; Tirosh, R.; Zurgil, N.; Deutsch, M. Tracing apoptosis and stimulation in individual cells by fluorescence intensity and anisotropy decay. J. Biomed. Opt. 2005, 10, 034007.

18

Ankri, R.; Ashkenazy, A.; Milstein, Y.; Brami, Y.; Olshinka, A.; Goldenberg-Cohen, N.; Popovtzer, A.; Fixler, D.; Hirshberg, A. Gold nanorods based air scanning electron microscopy and diffusion reflection imaging for mapping tumor margins in squamous cell carcinoma. ACS Nano 2016, 10, 2349-2356.

19

Zhang, H.; Cheng, K.; Hou, Y. M.; Fang, Z.; Pan, Z. X.; Wu, W. J.; Hua, J. L.; Zhong, X. H. Efficient CdSe quantum dot-sensitized solar cells prepared by a postsynthesis assembly approach. Chem. Commun. 2012, 48, 11235-11237.

20

Yang, Y. L.; An, F. F.; Liu, Z.; Zhang, X. J.; Zhou, M. J.; Li, W.; Hao, X. J.; Lee, C. -S.; Zhang, X. H. Ultrabright and ultrastable near-infrared dye nanoparticles for in vitro and in vivo bioimaging. Biomaterials 2012, 33, 7803-7809.

21

Pang, R.; Zhou, S. Y.; Hu, X. J.; Xie, Z.; Liu, X. J.; Duadi, H.; Fixler, D. New diffusion reflection imaging system using gold nanorods coated with poly-(3, 4-ethylenedioxythiophene). Opt. Mater. Express 2016, 6, 1238-1246.

22

Lim, S. Y.; Shen, W.; Gao, Z. Q. Carbon quantum dots and their applications. Chem. Soc. Rev. 2015, 44, 362-381.

23

Baker, S. N.; Baker, G. A. Luminescent carbon nanodots: Emergent nanolights. Angew. Chem., Int. Ed. 2010, 49, 6726-6744.

24

Wang, F.; Xie, Z.; Zhang, H.; Liu, C. Y.; Zhang, Y. G. Highly luminescent organosilane-functionalized carbon dots. Adv. Func. Mater. 2011, 21, 1027-1031.

25

Xie, Z.; Wang, F.; Liu, C. Y. Organic-inorganic hybrid functional carbon dot gel glasses. Adv. Mater. 2012, 24, 1716-1721.

26

Ankri, R.; Melzer, S.; Tarnok, A.; Fixler, D. Detection of gold nanorods uptake by macrophages using scattering analyses combined with diffusion reflection measurements as a potential tool for in vivo atherosclerosis tracking. Int. J. Nanomed. 2015, 10, 4437-4446.

27

Melzer, S.; Ankri, R.; Fixler, D.; Tarnok, A. Nanoparticle uptake by macrophages in vulnerable plaques for atherosclerosis diagnosis. J. Biophot. 2015, 8, 871-883.

28

Deng, L.; Liu, L.; Zhu, C. Z.; Li, D.; Dong, S. J. Hybrid gold nanocube@ silica@ graphene-quantum-dot superstructures: Synthesis and specific cell surface protein imaging applications. Chem. Commun. 2013, 49, 2503-2505.

29

Sau, T. K.; Murphy, C. J. Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. J. Am. Chem. Soc. 2004, 126, 8648-8649.

30

Ouhenia-Ouadahi, K.; Yasukuni, R.; Yu, P.; Laurent, G.; Pavageau, C.; Grand, J.; Guérin, J.; Léaustic, A.; Félidj, N.; Aubard, J. et al. Photochromic-fluorescent-plasmonic nanomaterials: Towards integrated three-component photoactive hybrid nanosystems. Chem. Commun. 2014, 50, 7299-7302.

31

Lai, C. W.; Hsiao, J. K.; Chen, Y. C.; Chou, P. T. Spherical and anisotropic silica shell nanomaterials. In Nanotechnologies for the Life Sciences. Kumar, C., Ed.; Wiley-VCH Verlag GmbH & Co: Weinheim, 2009.

32

Li, X.; Qian, J.; Jiang, L.; He, S. L. Fluorescence quenching of quantum dots by gold nanorods and its application to DNA detection. Appl. Phys. Lett. 2009, 94, 063111.

33

Liz-Marzán, L. M.; Giersig, M.; Mulvaney, P. Synthesis of nanosized gold-silica core-shell particles. Langmuir 1996, 12, 4329-4335.

34

Wang, K.; Zhang, X. L.; Niu, C. Y.; Wang, Y. Q. Template- activated strategy toward one-step coating silica colloidal microspheres with sliver. ACS Appl. Mater. Interfaces 2014, 6, 1272-1278.

35

Zhu, S. J.; Meng, Q. N.; Wang, L.; Zhang, J. H.; Song, Y. B.; Jin, H.; Zhang, K.; Sun, H. C.; Wang, H. Y.; Yang, B. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew. Chem., Int. Ed. 2013, 52, 3953-3957.

36

Xu, J. B.; Zhao, T. S.; Liang, Z. X.; Zhu, L. D. Facile preparation of AuPt alloy nanoparticles from organometallic complex precursor. Chem. Mater. 2008, 20, 1688-1690.

37

Wu, C. L.; Xu, Q. -H. Stable and functionable mesoporous silica-coated gold nanorods as sensitive localized surface plasmon resonance (LSPR) nanosensors. Langmuir 2009, 25, 9441-9446.

38

Fixler, D.; Ankri, R.; Kaplan, I.; Novikov, I.; Hirshberg, A. Diffusion reflection: A novel method for detection of oral cancer. J. Dent. Res. 2014, 93, 602-606.

39

Barnoy, E. A.; Fixler, D.; Popovtzer, R.; Nayhoz, T.; Ray, K. An ultra-sensitive dual-mode imaging system using metal-enhanced fluorescence in solid phantoms. Nano Res. 2015, 8, 3912-3921.

40

Turgeman, L.; Fixler, D. The influence of dead time related distortions on live cell fluorescence lifetime imaging (FLIM) experiments. J. Biophot. 2014, 7, 442-452.

41

Li, Y. -Q.; Cao, S. -H.; Cai, W. -P.; Liu, Q.; Liu, X. -Q.; Weng, Y. -H. Directional fluorescence based on surface plasmon- coupling. In Reviews in Fluorescence 2015. Geddes, C. D., Ed.; Springer: Switzerland, 2016; pp 71-95.

42

Jana, N. R.; Earhart, C.; Ying, J. Y. Synthesis of water- soluble and functionalized nanoparticles by silica coating. Chem. Mater. 2007, 19, 5074-5082.

43

Foda, M. F.; Huang, L.; Shao, F.; Han, H. -Y. Biocompatible and highly luminescent near-infrared CuInS2/ZnS quantum dots embedded silica beads for cancer cell imaging. ACS Appl. Mater. Interfaces 2014, 6, 2011-2017.

44

Wu, Q.; Chen, L.; Huang, L.; Wang, J.; Liu, J. W.; Hu, C.; Han, H. Y. Quantum dots decorated gold nanorod as fluorescent-plasmonic dual-modal contrasts agent for cancer imaging. Biosens. Bioelectron. 2015, 74, 16-23.

45

Barbé, C.; Bartlett, J.; Kong, L.; Finnie, K.; Lin, H. Q.; Larkin, M.; Calleja, S.; Bush, A.; Calleja, G. Silica particles: A novel drug-delivery system. Adv. Mater. 2004, 16, 1959-1966.

46

Tang, J.; Kong, B.; Wu, H.; Xu, M.; Wang, Y. C.; Wang, Y. L.; Zhao, D. Y.; Zheng, G. F. Carbon nanodots featuring efficient FRET for real-time monitoring of drug delivery and two- photon imaging. Adv. Mater. 2013, 25, 6569-6574.

47

Liu, Y. L.; Yang, M.; Zhang, J. P.; Zhi, X.; Li, C.; Zhang, C. L.; Pan, F.; Wang, K.; Yang, Y. M.; de la Fuentea, J. M. et al. Martinez de la Fuentea, J. Human induced pluripotent stem cells for tumor targeted delivery of gold nanorods and enhanced photothermal therapy. ACS Nano. 2016, 10, 2375-2385.

48

Fixler, D.; Garcia, J.; Zalevsky, Z.; Weiss, A.; Deutsch, M.; Speckle random coding for 2D super resolving fluorescent microscopic imaging. Micron 2007, 38, 121-128.

Nano Research
Pages 1262-1273
Cite this article:
Liu X, Liu L, Hu X, et al. Multimodal bioimaging based on gold nanorod and carbon dot nanohybrids as a novel tool for atherosclerosis detection. Nano Research, 2018, 11(3): 1262-1273. https://doi.org/10.1007/s12274-017-1739-4
Metrics & Citations  
Article History
Copyright
Return