AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Discharge voltage behavior of electric double-layer capacitors during high-g impact and their application to autonomously sensing high-g accelerometers

Keren Dai1,2,3Xiaofeng Wang1,2,3( )Fang Yi4Yajiang Yin1,2,3Cheng Jiang1,2,3Simiao Niu5Qingyu Li6Zheng You1,2,3( )
Collaborative Innovation Center for Micro/Nano FabricationDevice and SystemTsinghua UniversityBeijing100084China
State Key Laboratory of Precision Measurement Technology and InstrumentsTsinghua UniversityBeijing100084China
Department of Precision InstrumentTsinghua UniversityBeijing100084China
College of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
School of Chemical EngineeringStanford UniversityStanfordCalifornia94305USA
Department of Electronic EngineeringTsinghua UniversityBeijing100084China
Show Author Information

Graphical Abstract

Abstract

In this study, the discharge voltage behavior of electric double-layer capacitors (EDLCs) during high-g impact is studied both theoretically and experimentally. A micro-scale dynamic mechanism is proposed to describe the physical basis of the increase in the discharge voltage during a high-g impact. Based on this dynamic mechanism, a multi-field model is established, and the simulation and experimental studies of the discharge voltage increase phenomenon are conducted. From the simulation and experimental data, the relationship between the increased voltage and the high-g acceleration is revealed. An acceleration detection range of up to 10, 000g is verified. The design of the device is optimized by studying the influences of the parameters, such as the electrode thickness and discharge current, on the outputs. This work opens up new avenues for the development of autonomous sensor systems based on energy storage devices and is significant for many practical applications such as in collision testing and automobile safety.

Electronic Supplementary Material

Download File(s)
nr-11-2-1146_ESM.pdf (818.3 KB)

References

1

Fan, F. R.; Lin, L.; Zhu, G.; Wu, W. Z.; Zhang, R.; Wang, Z. L. Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Lett. 2012, 12, 3109-3114.

2

Ng, T. H.; Liao, W. H. Sensitivity analysis and energy harvesting for a self-powered piezoelectric sensor. J. Intell. Mater. Syst. Struct. 2005, 16, 785-797.

3

Wang, Z. L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 2013, 7, 9533-9557.

4

Anish, M.; Thamaraikannan, R.; Kanimozhi, B.; Varghese, H. G.; Varghese, S. G. Fabrication of hydraulic bumper for anti-collision in a vehicle. Appl. Mech. Mater. 2015, 766-767, 499-504.

5

Yang, H. I.; Yun, Y. W.; Park, G. J. Design of a pedestrian protection airbag system using experiments. Proc. Inst. Mech. Eng. Part D J. Autom. Eng. 2016, 230, 1182-1195.

6

Benser, E. T. Trends in inertial sensors and applications. In 2015 IEEE International Symposium on Inertial Sensors and Systems (ISISS). IEEE: Hawaii, USA, 2015; pp 1-4.

7

Davies, B. R.; Barron, C. C.; Montague, S.; Smith, J. H.; Murray, J. R.; Christenson, T. R.; Bateman, V. I. High-G MEMS integrated accelerometer. In Proceedings of SPIE 3046, Smart Structures and Materials 1997: Smart Electronics and MEMS. SPIE: San Diego, CA, 1997; pp52-62.

8

Jing, P. High-g impact test value of the research of key technologies. Master Degree Thesis, North University of China, Taiyuan, China, 2009.

9

Yang, P. H.; Ding, Y.; Lin, Z. Y.; Chen, Z. W.; Li, Y. Z.; Qiang, P. F.; Ebrahimi, M.; Mai, W. J.; Wong, C. P.; Wang, Z. L. Low-cost high-performance solid-state asymmetric supercapacitors based on MnO2 nanowires and Fe2O3 nanotubes. Nano Letters 2014, 14, 731-736.

10

Warren, R.; Sammoura, F.; Tounsi, F.; Sanghadasa, M.; Lin, L. W. Highly active ruthenium oxide coating via ALD and electrochemical activation in supercapacitor applications. J. Mater. Chem. A 2015, 3, 15568-15575.

11

Shao, Q. G.; Tang, J.; Lin, Y. X.; Zhang, F. F.; Yuan, J. S.; Zhang, H.; Shinya, N.; Qin, L. C. Synthesis and characterization of graphene hollow spheres for application in supercapacitors. J. Mater. Chem. A 2013, 1, 15423-15428.

12

Weng, Z.; Su, Y.; Wang, D. W.; Li, F.; Du, J. H.; Cheng, H. M. Graphene-cellulose paper flexible supercapacitors. Adv. Energy Mater. 2011, 1, 917-922.

13

Wang, X. F.; Yin, Y. J.; Li, X. Y.; You, Z. Fabrication of a symmetric micro supercapacitor based on tubular ruthenium oxide on silicon 3D microstructures. J. Power Sources 2014, 252, 64-72.

14

Wang, X. F.; Yin, Y. J.; Hao, C. L.; You, Z. A high-performance three-dimensional micro supercapacitor based on ripple-like ruthenium oxide-carbon nanotube composite films. Carbon 2015, 82, 436-445.

15

Dai, K. R.; Wang, X. F.; Yin, Y. J.; Hao, C. L.; You, Z. Voltage fluctuation in a supercapacitor during a high-g impact. Sci. Rep. 2016, 6, 38794.

16

Pramanik, C.; Saha, H. Piezoresistive pressure sensing by porous silicon membrane. IEEE Sens. J. 2006, 6, 301-309.

17

Domanski, K.; Grabiec, P.; Marczewski, J.; Gotszalk, T.; Ivanov, T.; Abedinov, N.; Rangelow, I. W. Fabrication and properties of piezoresistive cantilever beam with porous silicon element. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 2003, 21, 48-52.

18

Berodier, E.; Bizzozero, J.; Muller, A. C. A. Mercury intrusion porosimetry. In A Practical Guide to Microstructural Analysis of Cementitious Materials. Scrivener, K.; Snellings, R.; Lothenbach, B., Eds.; CRC Press: Boca Raton, 2016; pp 419-442.

19

Seaton, N. A.; Walton, J. P. R. B.; Quirke, N. A new analysis method for the determination of the pore size distribution of porous carbons from nitrogen adsorption measurements. Carbon 1989, 27, 853-861.

20

Zhang, R.; Wang, S. H.; Yeh, M. -H.; Pan, C. F.; Lin, L.; Yu, R. M.; Zhang, Y.; Zheng, L.; Jiao, Z. X.; Wang, Z. L. A streaming potential/current-based microfluidic direct current generator for self-powered nanosystems. Adv. Mater. 2015, 27, 6482-6487.

21

Johnson, A. M.; Newman, J. Desalting by means of porous carbon electrodes. J. Electrochem. Soc. 1971, 118, 510-517.

22

Srinivasan, V.; Weidner, J. W. Mathematical modeling of electrochemical capacitors. J. Electrochem. Soc. 1999, 146, 1650-1658.

23

Lin, C.; Ritter, J. A.; Popov, B. N.; White, R. E. A mathematical model of an electrochemical capacitor with double-layer and faradaic processes. J. Electrochem. Soc. 1999, 146, 3168-3175.

24

Wang, L. H.; Ding, T. H.; Wang, P. Influence of carbon black concentration on piezoresistivity for carbon-black-filled silicone rubber composite. Carbon 2009, 47, 3151-3157.

25

McLachlan, D. S.; Blaszkiewicz, M.; Newnham, R. E. Electrical resistivity of composites. J. Am. Ceram. Soc. 1990, 73, 2187-2203.

26

Pan, Y.; Wu, G. Z.; Yi, X. S. Vanadium sesquioxide-polymer composites: The study of electrical conductivity. J. Mater. Sci. 1994, 29, 5757-5764.

27

Li, Y. H.; Chen, J. B.; Wang, Y. The study on anti-high-g technology of missile body attitude measurement system. In International Conference on Automatic Control and Artificial Intelligence (ACAI 2012). IET: Xiamen, China, 2012; pp 2195-2198.

Nano Research
Pages 1146-1156
Cite this article:
Dai K, Wang X, Yi F, et al. Discharge voltage behavior of electric double-layer capacitors during high-g impact and their application to autonomously sensing high-g accelerometers. Nano Research, 2018, 11(2): 1146-1156. https://doi.org/10.1007/s12274-017-1740-y

716

Views

21

Crossref

N/A

Web of Science

20

Scopus

1

CSCD

Altmetrics

Received: 10 April 2017
Revised: 12 June 2017
Accepted: 23 June 2017
Published: 06 September 2017
© Tsinghua University Press and Springer-Verlag GmbH Germany 2017
Return