Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The development of highly active and cost-effective hydrogen evolution reaction (HER) catalysts is of vital importance to addressing global energy issues. Here, a three-dimensional interconnected porous carbon nanofiber (PCNF) membrane has been developed and utilized as a support for active cobalt phosphide (CoP) nanoparticles. This rationally designed self-supported HER catalyst has a lotus root-like multichannel structure, which provides several intrinsic advantages over conventional CNFs. The longitudinal channels can store the electrolyte and ensure fast ion and mass transport within the catalysts. Additionally, mesopores on the outer and inner carbon walls enhance ion and mass migration of the electrolyte to HER active CoP nanoparticles, thus shortening the ion transport distance and increasing the contact area between the electrolyte and the CoP nanoparticles. Moreover, the conductive carbon substrate provides fast electron transfer pathways by forming an integrated conductive network, which further ensures fast HER kinetics. As a result, the CoP/PCNF composites exhibit low onset-potentials (?20, ?91, and?84 mV in 0.5 M H2SO4, 1 M PBS, and 1 M KOH, respectively). These findings show that CoP/PCNF composites are promising self-supporting and high-performance all-pH range HER catalysts.
Zou, X. X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148-5180.
Voiry, D.; Yang, J.; Chhowalla, M. Recent strategies for improving the catalytic activity of 2D TMD nanosheets toward the hydrogen evolution reaction. Adv. Mater. 2016, 28, 6197-6206.
Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060-2086.
Chang, Y. H.; Wu, F. Y.; Chen, T. Y.; Hsu, C. L.; Chen, C. H.; Wiryo, F.; Wei, K. H.; Chiang, C. Y.; Li, L. J. Three- dimensional molybdenum sulfide sponges for electrocatalytic water splitting. Small 2014, 10, 895-900.
Xie, J. F.; Li, S.; Zhang, X. D.; Zhang, J. J.; Wang, R. X.; Zhang, H.; Pan, B. C.; Xie, Y. Atomically-thin molybdenum nitride nanosheets with exposed active surface sites for efficient hydrogen evolution. Chem. Sci. 2014, 5, 4615-4620.
Wan, C.; Leonard, B. M. Iron-doped molybdenum carbide catalyst with high activity and stability for the hydrogen evolution reaction. Chem. Mater. 2015, 27, 4281-4288.
Ang, H.; Wang, H. W.; Li, B.; Zong, Y.; Wang, X. F.; Yan, Q. Y. 3D hierarchical porous Mo2C for efficient hydrogen evolution. Small 2016, 12, 2859-2865.
Subbaraman, R.; Tripkovic, D.; Strmcnik, D.; Chang, K. C.; Uchimura, M.; Paulikas, A. P.; Stamenkovic, V.; Markovic, N. M. Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)2-Pt interfaces. Science 2011, 334, 1256-1260.
Kundu, A.; Sahu, J. N.; Redzwan, G.; Hashim, M. A. An overview of cathode material and catalysts suitable for generating hydrogen in microbial electrolysis cell. Int. J. Hydrogen Energy 2013, 38, 1745-1757.
Xiao, P.; Chen, W.; Wang, X. A review of phosphide-based materials for electrocatalytic hydrogen evolution. Adv. Energy Mater. 2015, 5, 1500985.
Popczun, E. J.; Read, C. G.; Roske, C. W.; Lewis, N. S.; Schaak, R. E. Highly active electrocatalysis of the hydrogen evolution reaction by cobalt phosphide nanoparticles. Angew. Chem., Int. Ed. 2014, 126, 5531-5534.
Huang, Z. P.; Chen, Z. Z.; Chen, Z. B.; Lv, C. C.; Humphrey, M. G.; Zhang, C. Cobalt phosphide nanorods as an efficient electrocatalyst for the hydrogen evolution reaction. Nano Energy 2014, 9, 373-382.
Jiang, P.; Liu, Q.; Ge, C. J.; Cui, W.; Pu, Z. H.; Asiri, A. M.; Sun, X. P. CoP nanostructures with different morphologies: Synthesis, characterization and a study of their electrocatalytic performance toward the hydrogen evolution reaction. J. Mater. Chem. A 2014, 2, 14634-14640.
Yang, J.; Zhang, Y.; Sun, C. C.; Liu, H. Z.; Li, L. Q.; Si, W. L.; Huang, W.; Yan, Q. Y.; Dong, X. C. Graphene and cobalt phosphide nanowire composite as an anode material for high performance lithium-ion batteries. Nano Res. 2016, 9, 612-621.
Liao, L.; Zhu, J.; Bian, X. J.; Zhu, L. N.; Scanlon, M. D.; Girault, H. H.; Liu, B. H. MoS2 formed on mesoporous graphene as a highly active catalyst for hydrogen evolution. Adv. Funct. Mater. 2013, 23, 5326-5333.
Huang, H. J.; Wang, X. Recent progress on carbon-based support materials for electrocatalysts of direct methanol fuel cells. J. Mater. Chem. A 2014, 2, 6266-6291.
Li, M.; Liu, X. T.; Xiong, Y. P.; Bo, X. J.; Zhang, Y. F.; Han, C.; Guo, L. P. Facile synthesis of various highly dispersive CoP nanocrystal embedded carbon matrices as efficient electrocatalysts for the hydrogen evolution reaction. J. Mater. Chem. A 2015, 3, 4255-4265.
Liu, Q.; Tian, J. Q.; Cui, W.; Jiang, P.; Cheng, N. Y.; Asiri, A. M.; Sun, X. P. Carbon nanotubes decorated with CoP nanocrystals: A highly active non-noble-metal nanohybrid electrocatalyst for hydrogen evolution. Angew. Chem., Int. Ed. 2014, 53, 6710-6714.
Zhang, B.; Kang, F. Y.; Tarascon, J. M.; Kim, J. K. Recent advances in electrospun carbon nanofibers and their application in electrochemical energy storage. Prog. Mater. Sci. 2016, 76, 319-380.
He, H. Y.; Shi, L.; Fang, Y.; Li, X. L.; Song, Q.; Zhi, L. J. Mass production of multi-channeled porous carbon nanofibers and their application as binder-free electrodes for high- performance supercapacitors. Small 2014, 10, 4671-4676.
Li, Z.; Zhang, J. T.; Chen, Y. M.; Li, J.; Lou, X. W. D. Pie-like electrode design for high-energy density lithium- sulfur batteries. Nat. Commun. 2015, 6, 8850.
Zhou, Q. H.; Li, Z. Y.; Liang, H. Q.; Long, Y. J.; Wu, Q.; Gao, H. Y.; Liang, G. D.; Zhu, F. M. Crystallization- driven self-assembly of isotactic polystyrene in N, N-dimethylformamide. Chin. J. Polym. Sci. 2015, 33, 646-651.
Marwat, Z. K.; Baloch, M. K. Miscibility between PS and PSAN affected by solvent and temperature of the system. Chin. J. Polym. Sci. 2014, 32, 1442-1449.
Lu, H. Y.; Huang, Y. P.; Yan, J. J.; Fan, W.; Liu, T. X. Nitrogen-doped graphene/carbon nanotube/Co3O4 hybrids: One-step synthesis and superior electrocatalytic activity for the oxygen reduction reaction. RSC Adv. 2015, 5, 94615- 94622.
Xu, C. H.; Sun, J.; Gao, L. A. Controllable synthesis of triangle taper-like cobalt hydroxide and cobalt oxide. CrystEngComm. 2011, 13, 1586-1590.
Infantes-Molina, A.; Cecilia, J. A.; Pawelec, B.; Fierro, J. L. G.; Rodríguez-Castellón, E.; Jiménez-López, A. Ni2P and CoP catalysts prepared from phosphite-type precursors for HDS-HDN competitive reactions. Appl. Catal. A 2010, 390, 253-263.
Yang, F. L.; Chen, Y. T.; Cheng, G. Z.; Chen, S. L.; Luo, W. Ultrathin nitrogen-doped carbon coated with CoP for efficient hydrogen evolution. ACS Catal. 2017, 7, 3824-3831.
Liu, M. J.; Li, J. H. Cobalt phosphide hollow polyhedron as efficient bifunctional electrocatalysts for the evolution reaction of hydrogen and oxygen. ACS Appl. Mater. Interfaces 2016, 8, 2158-2165.
Pan, Y.; Lin, Y.; Chen, Y. J.; Liu, Y. Q.; Liu, C. G. Cobalt phosphide-based electrocatalysts: Synthesis and phase catalytic activity comparison for hydrogen evolution. J. Mater. Chem. A 2016, 4, 4745-4754.
Tian, J. Q.; Liu, Q.; Asiri, A. M.; Sun, X. P. Self-supported nanoporous cobalt phosphide nanowire arrays: An efficient 3D hydrogen-evolving cathode over the wide range of pH 0-14. J. Am. Chem. Soc. 2014, 136, 7587-7590.
Miao, Y. E.; Huang, Y. P.; Zhang, L. S.; Fan, W.; Lai, F. L.; Liu, T. X. Electrospun porous carbon nanofiber@MoS2 core/sheath fiber membranes as highly flexible and binder- free anodes for lithium-ion batteries. Nanoscale 2015, 7, 11093-11101.
Xu, K.; Wang, F. M.; Wang, Z. X.; Zhan, X. Y.; Wang, Q. S.; Cheng, Z. Z.; Safdar, M.; He, J. Component-controllable WS2(1-x)Se2x nanotubes for efficient hydrogen evolution reaction. ACS Nano 2014, 8, 8468-8476.