AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Improved peroxidase-mimic property: Sustainable, high-efficiency interfacial catalysis with H2O2 on the surface of vesicles of hexavanadate-organic hybrid surfactants

Kun Chen1,2Aruuhan Bayaguud1Hui Li2Yang Chu2Haochen Zhang1Hongli Jia1Baofang Zhang2Zicheng Xiao3Pingfan Wu3( )Tianbo Liu2( )Yongge Wei1,4( )
Department of ChemistryTsinghua UniversityBeijing100084China
Department of Polymer ScienceUniversity of AkronAkronOhio44325USA
Institute of POM-based MaterialsHubei University of TechnologyWuhan430065China
State Key Laboratory of Natural and Biomimetic DrugsPeking UniversityBeijing100191China
Show Author Information

Graphical Abstract

Abstract

An emerging method for effectively improving the catalytic activity of metal oxide hybrids involves the creation of metal oxide interfaces for facilitating the activation of reagents. Here, we demonstrate that bilayer vesicles formed from a hexavanadate cluster functionalized with two alkyl chains are highly efficient catalysts for the oxidation of 3, 3′, 5, 5′-tetramethylbenzidine (TMB) with H2O2 at room temperature, a widely used model reaction mimicking the activity of peroxidase in biological catalytic oxidation processes. Driven by hydrophobic interactions, the double-tailed hexavanadate-headed amphiphiles can self-assemble into bilayer vesicles and create hydrophobic domains that segregate the TMB chromogenic substrate. The reaction of TMB with H2O2 takes place at the interface of the hydrophilic and hydrophobic domains, where the reagents also make contact with the catalytic hexavanadate clusters, and it is approximately two times more efficient compared with the reactions carried out with the corresponding unassembled systems. Moreover, the assembled vesicular system possesses affinity for TMB comparable to that of reported noble metal mimic nanomaterials, as well as a higher maximum reaction rate.

Electronic Supplementary Material

Download File(s)
12274_2017_1746_MOESM1_ESM.pdf (1.7 MB)

References

1

Marguet, M.; Bonduelle, C.; Lecommandoux, S. Multicompartmentalized polymeric systems: Towards biomimetic cellular structure and function. Chem. Soc. Rev. 2013, 42, 512–529.

2

Tanner, P.; Baumann, P.; Enea, R.; Onaca, O.; Palivan, C.; Meier, W. Polymeric vesicles: From drug carriers to nanoreactors and artificial organelles. Acc. Chem. Res. 2011, 44, 1039–1049.

3

Whitesides, G. M.; Grzybowski, B. Self-assembly at all scales. Science 2002, 295, 2418–2421.

4

Küchler, A.; Yoshimoto, M.; Luginbühl, S.; Mavelli, F.; Walde, P. Enzymatic reactions in confined environments. Nat. Nanotechnol. 2016, 11, 409–420.

5

Palivan, C. G.; Goers, R.; Najer, A.; Zhang, X. Y.; Car, A.; Meier, W. Bioinspired polymer vesicles and membranes for biological and medical applications. Chem. Soc. Rev. 2016, 45, 377–411.

6

Peters, R. J. R. W.; Marguet, M.; Marais, S.; Fraaije, M. W.; van Hest, J. C. M.; Lecommandoux, S. Cascade reactions in multicompartmentalized polymersomes. Angew. Chem., Int. Ed. 2014, 53, 146–150.

7

Bolinger, P. Y.; Stamou, D.; Vogel, H. An integrated self-assembled nanofluidic system for controlled biological chemistries. Angew. Chem., Int. Ed. 2008, 47, 5544–5549.

8

Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 2013, 12, 991–1003.

9

Gao, L. Z.; Zhuang, J.; Nie, L.; Zhang, J. B.; Zhang, Y.; Gu, N.; Wang, T. H.; Feng, J.; Yang, D. L.; Perrett, S. et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583.

10

Song, Y. J.; Qu, K. G.; Zhao, C.; Ren, J. S.; Qu, X. G. Graphene oxide: Intrinsic peroxidase catalytic activity and its application to glucose detection. Adv. Mater. 2010, 22, 2206–2210.

11

Gao, N.; Dong, K.; Zhao, A. D.; Sun, H. J.; Wang, Y.; Ren, J. S.; Qu, X. G. Polyoxometalate-based nanozyme: Design of a multifunctional enzyme for multi-faceted treatment of Alzheimer's disease. Nano Res. 2016, 9, 1079–1090.

12

Liu, B. W.; Liu, J. W. Surface modification of nanozymes. Nano Res. 2017, 10, 1125–1148.

13

Cai, S. F.; Jia, X. H.; Han, Q. S.; Yan, X. Y.; Yang, R.; Wang, C. Porous Pt/Ag nanoparticles with excellent multifunctional enzyme mimic activities and antibacterial effects. Nano Res. 2017, 10, 2056–2069.

14

Crans, D. C.; Smee, J. J.; Gaidamauskas, E.; Yang, L. Q. The chemistry and biochemistry of vanadium and the biological activities exerted by vanadium compounds. Chem. Rev. 2004, 104, 849–902.

15

Wang, J. J.; Mi, X. G.; Guan, H. Y.; Wang, X. H.; Wu, Y. Assembly of folate-polyoxometalate hybrid spheres for colorimetric immunoassay like oxidase. Chem. Commun. 2011, 47, 2940–2942.

16

Proust, A.; Matt, B.; Villanneau, R.; Guillemot, G.; Gouzerh, P.; Izzet, G. Functionalization and post-functionalization: A step towards polyoxometalate-based materials. Chem. Soc. Rev. 2012, 41, 7605–7622.

17

Han, X. B.; Zhang, Z. M.; Zhang, T.; Li, Y. G.; Lin, W. B.; You, W. S.; Su, Z. M.; Wang, E. B. Polyoxometalate-based cobalt-phosphate molecular catalysts for visible light-driven water oxidation. J. Am. Chem. Soc. 2014, 136, 5359–5366.

18

Lv, H. J.; Geletii, Y. V.; Zhao, C. C.; Vickers, J. W.; Zhu, G. B.; Luo, Z.; Song, J.; Lian, T. Q.; Musaev, D. G.; Hill, C. L. Polyoxometalate water oxidation catalysts and the production of green fuel. Chem. Soc. Rev. 2012, 41, 7572–7589.

19

Garai, S.; Bögge, H.; Merca, A.; Petina, O. A.; Grego, A.; Gouzerh, P.; Haupt, E. T. K.; Weinstock, I. A.; Müller, A. Densely packed hydrophobic clustering: Encapsulated valerates form a high-temperature-stable {Mo132} capsule system. Angew. Chem., Int. Ed. 2016, 55, 6634–6637.

20

Bayaguud, A.; Chen, K.; Wei, Y. G. Controllable synthesis of polyoxovanadate-based coordination polymer nanosheets with extended exposure of catalytic sites. Nano Res. 2016, 9, 3858–3867.

21

Busche, C.; Vilà-Nadal, L.; Yan, J.; Miras, H. N.; Long, D. L.; Georgiev, V. P.; Asenov, A.; Pedersen, R. H.; Gadegaard, N.; Mirza, M. M. et al. Design and fabrication of memory devices based on nanoscale polyoxometalate clusters. Nature 2014, 515, 545–549.

22

Yin, P. C.; Wu, B.; Li, T.; Bonnesen, P. V.; Hong, K. L.; Seifert, S.; Porcar, L.; Do, C.; Keum, J. K. Reduction-triggered self-assembly of nanoscale molybdenum oxide molecular clusters. J. Am. Chem. Soc. 2016, 138, 10623–10629.

23

Wang, Z.; Daemen, L. L.; Cheng, Y.; Mamontov, E.; Bonnesen, P. V.; Hong, K.; Ramirez-Cuesta, A. J.; Yin, P. Nano-confinement inside molecular metal oxide clusters: Dynamics and modified encapsulation behavior. Chem. —Eur. J. 2016, 22, 14131–14136.

24

Kopilevich, S.; Gottlieb, H.; Keinan-Adamsky, K.; Müller, A.; Weinstock, I. A. The uptake and assembly of alkanes within a porous nanocapsule in water: New information about hydrophobic confinement. Angew. Chem., Int. Ed. 2016, 55, 4476–4481.

25

Zhang, J.; Song, Y. F.; Cronin, L.; Liu, T. B. Self-assembly of organic-inorganic hybrid amphiphilic surfactants with large polyoxometalates as polar head groups. J. Am. Chem. Soc. 2008, 130, 14408–14409.

26

Yin, P. C.; Wu, P. F.; Xiao, Z. C.; Li, D.; Bitterlich, E.; Zhang, J.; Cheng, P.; Vezenov, D. V.; Liu, T. B.; Wei, Y. G. A double-tailed fluorescent surfactant with a hexavanadate cluster as the head group. Angew. Chem., Int. Ed. 2011, 50, 2521–2525.

27

Wu, P. F.; Xiao, Z. C.; Zhang, J.; Hao, J.; Chen, J. K.; Yin, P. C.; Wei, Y. G. DMAP-catalyzed esterification of pentaerythritol-derivatized POMs: A new route for the functionalization of polyoxometalates. Chem. Commun. 2011, 47, 5557–5559.

28

Yin, P. C.; Li, D.; Liu, T. B. Solution behaviors and self-assembly of polyoxometalates as models of macroions and amphiphilic polyoxometalate-organic hybrids as novel surfactants. Chem. Soc. Rev. 2012, 41, 7368–7383.

29

Liu, T. B.; Diemann, E.; Li, H. L.; Dress, A. W. M.; Müller, A. Self-assembly in aqueous solution of wheel-shaped Mo154 oxide clusters into vesicles. Nature 2003, 426, 59–62.

30

Liu, T. B.; Langston, M. L. K.; Li, D.; Pigga, J. M.; Pichon, C.; Todea, A. M.; Müller, A. Self-recognition among different polyprotic macroions during assembly processes in dilute solution. Science 2011, 331, 1590–1592.

31

Wang, Z. J.; Clary, K. N.; Bergman, R. G.; Raymond, K. N.; Toste, F. D. A supramolecular approach to combining enzymatic and transition metal catalysis. Nat. Chem. 2013, 5, 100–103.

32

Raynal, M.; Ballester, P.; Vidal-Ferran, A.; van Leeuwen, P. W. N. M. Supramolecular catalysis. Part 2: Artificial enzyme mimics. Chem. Soc. Rev. 2014, 43, 1734–1787.

33

Sun, X. L.; Guo, S. J.; Chung, C. S.; Zhu, W. L.; Sun, S. H. A sensitive H2O2 assay based on dumbbell-like PtPd-Fe3O4 nanoparticles. Adv. Mater. 2013, 25, 132–136.

34

Cai, K.; Lv, Z. C.; Chen, K.; Huang, L.; Wang, J.; Shao, F.; Wang, Y. J.; Han, H. Y. Aqueous synthesis of porous platinum nanotubes at room temperature and their intrinsic peroxidase-like activity. Chem. Commun. 2013, 49, 6024– 6026.

35

Hu, Y. L.; Lee, C. C.; Ribbe, M. W. Extending the carbon chain: Hydrocarbon formation catalyzed by vanadium/molybdenum nitrogenases. Science 2011, 333, 753–755.

36

Liu, T. B. Hydrophilic macroionic solutions: What happens when soluble ions reach the size of nanometer scale? Langmuir 2010, 26, 9202–9213.

37

Pigga, J. M.; Kistler, M. L.; Shew, C. Y.; Antonio, M. R.; Liu, T. B. Counterion distribution around hydrophilic molecular macroanions: The source of the attractive force in self-assembly. Angew. Chem., Int. Ed. 2009, 48, 6538–6542.

38

Poyton, M. F.; Sendecki, A. M.; Cong, X.; Cremer, P. S. Cu2+ binds to phosphatidylethanolamine and increases oxidation in lipid membranes. J. Am. Chem. Soc. 2016, 138, 1584–1590.

39

Stohs, S. J.; Bagchi, D. Oxidative mechanisms in the toxicity of metal ions. Free Radical Biol. Med. 1995, 18, 321–336.

40

Nogueira, R. F. P.; Oliveira, M. C.; Paterlini, W. C. Simple and fast spectrophotometric determination of H2O2 in photo-Fenton reactions using metavanadate. Talanta 2005, 66, 86–91.

41

Lei, C. X.; Hu, S. Q.; Shen, G. L.; Yu, R. Q. Immobilization of horseradish peroxidase to a nano-Au monolayer modified chitosan-entrapped carbon paste electrode for the detection of hydrogen peroxide. Talanta 2003, 59, 981–988.

42

Mizuno, N.; Kamata, K. Catalytic oxidation of hydrocarbons with hydrogen peroxide by vanadium-based polyoxometalates. Coord. Chem. Rev. 2011, 255, 2358–2370.

43

Sun, M.; Zhang, J. Z.; Putaj, P.; Caps, V.; Lefebvre, F.; Pelletier, J.; Basset, J. M. Catalytic oxidation of light alkanes (C1–C4) by heteropoly compounds. Chem. Rev. 2014, 114, 981–1019.

44

Wang, S. S.; Yang, G. Y. Recent advances in polyoxometalate-catalyzed reactions. Chem. Rev. 2015, 115, 4893–4962.

Nano Research
Pages 1313-1321
Cite this article:
Chen K, Bayaguud A, Li H, et al. Improved peroxidase-mimic property: Sustainable, high-efficiency interfacial catalysis with H2O2 on the surface of vesicles of hexavanadate-organic hybrid surfactants. Nano Research, 2018, 11(3): 1313-1321. https://doi.org/10.1007/s12274-017-1746-5

732

Views

26

Crossref

N/A

Web of Science

26

Scopus

1

CSCD

Altmetrics

Received: 06 May 2017
Revised: 18 June 2017
Accepted: 23 June 2017
Published: 02 February 2018
© Tsinghua University Press and Springer-Verlag GmbH Germany 2017
Return