AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

One-dimension carbon self-doping g-C3N4 nanotubes: Synthesis and application in dye-sensitized solar cells

Xue LiKai PanYang Qu( )Guofeng Wang( )
Key Laboratory of Functional Inorganic Material ChemistryMinistry of EducationSchool of Chemistry and Materials ScienceHeilongjiang UniversityHarbin150080China
Show Author Information

Graphical Abstract

Abstract

One-dimension carbon self-doping g-C3N4 nanotubes (CNT) with abundant communicating pores were synthesized via thermal polymerization of saturated or supersaturated urea inside the framework of a melamine sponge for the first time. A ~16% improvement in photoelectric conversion efficiency (η) is observed for the devices fabricated with a binary hybrid composite of the obtained CNT and TiO2 compared to pure TiO2 device. The result of EIS analysis reveals that the interfacial resistance of the TiO2-dye|I3-/I- electrolyte interface of TiO2-CNT composite cell is much lower than that of pure TiO2 cell. In addition, the TiO2-CNT composite cell exhibits longer electron recombination time, shorter electron transport time, and higher charge collection efficiency than those of pure TiO2 cell. Systematic investigations reveal that the CNT boosts the light harvesting ability of the photovoltaic devices by enhancing not only the visible light absorption but also the charge separation and transfer.

Electronic Supplementary Material

Download File(s)
12274_2017_1747_MOESM1_ESM.pdf (1.2 MB)

References

1

Yin, H. J.; Tang, H. J.; Wang, D.; Gao, Y.; Tang, Z. Y. Facile synthesis of surfactant-free Au cluster/graphene hybrids for high-performance oxygen reduction reaction. ACS Nano 2012, 6, 8288–8297.

2

Shu, Q. K.; Wei, J. Q.; Wang, K. L.; Song, S.; Guo, N.; Jia, Y.; Li, Z.; Xu, Y.; Cao, A. Y.; Zhu, H. W. et al. Efficient energy conversion of nanotube/nanowire-based solar cells. Chem. Commun. 2010, 46, 5533–5535.

3

Fu, Z. W.; Jiang, T. F.; Zhang, L. J.; Liu, B. K.; Wang, D. J.; Wang, L. L.; Xie, T. F. Surface treatment with Al3+ on a Ti-doped α-Fe2O3 nanorod array photoanode for efficient photoelectrochemical water splitting. J. Mater. Chem. A 2014, 2, 13705–13712.

4

Liang, T.; Yan, D. Y.; Jiao, Y.; Wang, H.; Zheng, Y.; Zheng, X. L.; Mao, J.; Du, X. W.; Hu, Z. P.; Jaroniec, M. et al. Engineering surface atomic structure of single-crystal cobalt (Ⅱ) oxide nanorods for superior electrocatalysis. Nat. Commun. 2016, 7, 12876.

5

Dong, Y. Z.; Li, J. H. Tungsten nitride nanocrystals on nitrogen-doped carbon black as efficient electrocatalysts for oxygen reduction reactions. Chem. Commun. 2015, 51, 572–575.

6

Xiao, J. Y.; Yang, Y. Y.; Xu, X.; Shi, J. J.; Zhu, L. F.; Lv, S. T.; Wu, H. J.; Luo, Y. H.; Li, D. M.; Meng, Q. B. Pressure-assisted CH3NH3PbI3 morphology reconstruction to improve the high performance of perovskite solar cells. J. Mater. Chem. A 2015, 3, 5289–5293.

7

Zhang, N.; Qu, Y.; Pan, K.; Wang, G. F.; Li, Y. D. Synthesis of pure phase Mg1.2Ti1.8O5 and MgTiO3 nanocrystals for photocatalytic hydrogen production. Nano Res. 2016, 9, 726–734.

8

Meng, L.; Ren, Z. Y.; Zhou, W.; Qu, Y.; Wang, G. F. MgTiO3/MgTi2O5/TiO2 heterogeneous belt-junctions with high photocatalytic hydrogen production activity. Nano Res. 2017, 10, 295–304.

9

Yu, M. Q.; Qu, Y.; Pan, K.; Wang, G. F.; Li, Y. D. Enhanced photoelectric conversion efficiency of dye-sensitized solar cells by the synergetic effect of NaYF4: Er3+/Yb3+ and g-C3N4. Sci. China Mater. 2017, 60, 228–238.

10

Ahmad, S.; Guillén, E.; Kavan, L.; Grätzel, M.; Nazeeruddin, M. K. Metal free sensitizer and catalyst for dye sensitized solar cells. Energy Environ. Sci. 2013, 6, 3439–3466.

11

Mai, C. L.; Huang, W. K.; Lu, H. P.; Lee, C. W.; Chiu, C. L.; Liang, Y. R.; Diau, E. W. G.; Yeh, C. Y. Synthesis and characterization of diporphyrin sensitizers for dye-sensitized solar cells. Chem. Commun. 2010, 46, 809–811.

12

Yella, A.; Lee, H. W.; Tsao, H. N.; Yi, C. Y.; Chandiran, A. K.; Nazeeruddin, M. K.; Diau, E. W. G.; Yeh, C. Y.; Zakeeruddin, S. M.; Grätzel, M. Porphyrin-sensitized solar cells with cobalt (Ⅱ/Ⅲ)-based redox electrolyte exceed 12 percent efficiency. Science 2011, 334, 629–634.

13

Choi, H.; Raabe, I.; Kim, D.; Teocoli, F.; Kim, C.; Song, K.; Yum, J, H.; Ko, J.; Nazeeruddin, M. K.; Grätzel, M. High molar extinction coefficient organic sensitizers for efficient dye-sensitized solar cells. Chem. —Eur. J. 2010, 16, 1193–1201.

14

Li, Y.; Wang, G. F.; Pan, K.; Jiang, B. J.; Tian, C. G.; Zhou, W.; Fu, H. G. NaYF4: Er3+/Yb3+-graphene composites: Preparation, upconversion luminescence, and application in dye-sensitized solar cells. J. Mater. Chem., 2012, 22, 20381–20386.

15

Yang, N. L.; Zhai, J.; Wang, D.; Chen, Y. S.; Jiang, L. Two-dimensional graphene bridges enhanced photoinduced charge transport in dye-sensitized solar cells. ACS Nano 2010, 4, 887–894.

16

Hwang, D.; Kim, D. Y.; Jang, S. Y.; Kim, D. Superior photoelectrodes for solid-state dye-sensitized solar cells using amphiphilic TiO2. J. Mater. Chem. A 2013, 1, 1228–1238.

17

Guo, M.; Xie, K. Y.; Lin, J.; Yong, Z. H.; Yip, C. T.; Zhou, L. M.; Wang, Y.; Huang, H. T. Design and coupling of multifunctional TiO2 nanotube photonic crystal to nanocrystalline titania layer as semi-transparent photoanode for dye-sensitized solar cell. Energy Environ. Sci. 2012, 5, 9881–9888.

18

Rahman, M. M.; Im, S. H.; Lee, J. J. Enhanced photoresponse in dye-sensitized solar cells via localized surface plasmon resonance through highly stable nickel nanoparticles. Nanoscale 2016, 8, 5884–5891.

19

Lou, S.; Guo, X. M.; Fan, T. X.; Zhang, D. Butterflies: Inspiration for solar cells and sunlight water-splitting catalysts. Energy Environ. Sci. 2012, 5, 9195–9216.

20

Chen, Z. W.; Higgins, D.; Yu, A. P.; Zhang, L.; Zhang, J. J. A review on non-precious metal electrocatalysts for PEM fuel cells. Energy Environ. Sci. 2011, 4, 3167–3192.

21

Wang, Y. P.; Qu, Y.; Pan, K.; Wang, G. F.; Li, Y. D. Enhanced photoelectric conversion efficiency of dye sensitized solar cells via the incorporation of one dimensional luminescent BaWO4: Eu3+ nanowires. Chem. Commun. 2016, 52, 11124–11126.

22

Yu, M. Q.; Su, J. M.; Wang, G. F.; Li, Y. D. Pt/Y2O3: Eu3+ composite nanotubes: Enhanced photoluminescence and application in dye-sensitized solar cells. Nano Res. 2016, 9, 2338–2346.

23

Dong, Y. Z.; Pan, K.; Tian, G. H.; Zhou, W.; Pan, Q. J.; Xie, T. F.; Wang, D. J.; Fu, H. G. Dye-sensitized solar cells based on TiO2-B nanobelt/TiO2 nanoparticle sandwich-type photoelectrodes with controllable nanobelt length. Dalton Trans. 2011, 40, 3808–3814.

24

Gao, J.; Zhou, Y.; Li, Z. S.; Yan, S. C.; Wang, N. Y.; Zou, Z. G. High-yield synthesis of millimetre-long, semiconducting carbon nitride nanotubes with intense photoluminescence emission and reproducible photoconductivity. Nanoscale 2012, 4, 3687–3692.

25

Chen, D.; Zhang, H.; Liu, Y.; Li, J. H. Graphene and its derivatives for the development of solar cells, photoelectrochemical, and photocatalytic applications. Energy Environ. Sci. 2013, 6, 1362–1387.

26

Wang, S. P.; Li, C. J.; Wang, T.; Zhang, P.; Li, A.; Gong, J. L. Controllable synthesis of nanotube-type graphitic C3N4 and their visible-light photocatalytic and fluorescent properties. J. Mater. Chem. A 2014, 2, 2885–2890.

27

Dai, X. P.; Li, Z. Z.; Ma, Y. D.; Liu, M. Z.; Du, K. L.; Su, H. X.; Zhou, H. Y.; Yu, L.; Sun, H.; Zhang, X. Metallic cobalt encapsulated in bamboo-like and nitrogen-rich carbonitride nanotubes for hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2016, 8, 6439–6448.

28

Liang, Q. H.; Li, Z.; Yu, X. L.; Huang, Z. H.; Kang, F. Y.; Yang, Q. H. Macroscopic 3D porous graphitic carbon nitride monolith for enhanced photocatalytic hydrogen evolution. Adv. Mater. 2015, 27, 4634–4639.

29

Wang, P.; Dai, Q.; Zakeeruddin, S.; Forsyth, M.; MacFarlane, D. R.; Grätzel, M. Ambient temperature plastic crystal electrolyte for efficient, all-solid-state dye-sensitized solar cell. J. Am. Chem. Soc. 2004, 126, 13590–13591.

30

Hwang, D.; Lee, H.; Jang, S. Y.; Jo, S. M.; Kim, D.; Seo, Y.; Kim, D. Y. Electrospray preparation of hierarchically-structured mesoporous TiO2 spheres for use in highly efficient dye-sensitized solar cells. ACS Appl. Mater. Interfaces 2011, 3, 2719–2725.

31

Sun, T.; Lu, M. Band-structure modulation of SrTiO3 by hydrogenation for enhanced photoactivity. Appl. Phys. A 2012, 108, 171–175.

32

Yu, J. G.; Wang, S. H.; Low, J.; Xiao, W. Enhanced photocatalytic performance of direct Z-scheme g-C3N4–TiO2 photocatalysts for the decomposition of formaldehyde in air. Phys. Chem. Chem. Phys. 2013, 15, 16883–16890.

33

Zhao, Z. W.; Sun, Y. J.; Dong, F.; Zhang, Y. X.; Zhao, H. Template-synthesis of carbon self-doped g-C3N4 with enhanced visible to near-infrared absorption and photocatalytic performance. RSC Adv. 2015, 5, 39549–39556.

Nano Research
Pages 1322-1330
Cite this article:
Li X, Pan K, Qu Y, et al. One-dimension carbon self-doping g-C3N4 nanotubes: Synthesis and application in dye-sensitized solar cells. Nano Research, 2018, 11(3): 1322-1330. https://doi.org/10.1007/s12274-017-1747-4

695

Views

36

Crossref

N/A

Web of Science

35

Scopus

4

CSCD

Altmetrics

Received: 09 May 2017
Revised: 13 June 2017
Accepted: 23 June 2017
Published: 02 February 2018
© Tsinghua University Press and Springer-Verlag GmbH Germany 2017
Return