AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Sulfur nanoparticles encapsulated in reduced graphene oxide nanotubes for flexible lithium-sulfur batteries

Kena Chen1Jun Cao1Qiongqiong Lu1Qingrong Wang1Minjie Yao1Mingming Han1Zhiqiang Niu1( )Jun Chen1,2
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)College of ChemistryNankai UniversityTianjin300071China
Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)Nankai UniversityTianjin300071China
Show Author Information

Graphical Abstract

Abstract

Rapid development of flexible electronic devices is promoting the design of flexible energy-storage devices. Lithium-sulfur (Li-S) batteries are considered as promising candidates for high energy density energy-storage devices. Therefore, flexible Li-S batteries are desired. In this study, we fabricated composite films of freestanding reduced graphene oxide nanotubes wrapped sulfur nanoparticles (RGONTs@S) by pressing RGONTs@S composite foams, which were synthesized by combining cold quenching with freeze-drying and a subsequent reduction process. These RGONTs@S composite films can serve as self-supporting cathodes for Li-S batteries without additional binders and conductive agents. Their interconnected tubular structure allows easy electron transport throughout the network and helps to confine the polysulfides produced during the charge/discharge process. As a result, the RGONTs@S composite films exhibited a high initial specific capacity, remarkable cycling stability, and excellent rate capability. More importantly, the RGONTs@S composite films can serve as electrodes in flexible Li-S batteries. As a proof of concept, soft-packaged Li-S batteries were assembled using these electrodes and they displayed stable electrochemical performance at different bending states.

Electronic Supplementary Material

Download File(s)
12274_2017_1749_MOESM1_ESM.pdf (1.9 MB)

References

1

Liu, W.; Song, M. S.; Kong, B.; Cui, Y. Flexible and stretchable energy storage: Recent advances and future perspectives. Adv. Mater. 2017, 29, 1603436.

2

Xu, Y. F.; Zhang, Y.; Guo, Z. Y.; Ren, J.; Wang, Y. G.; Peng, H. S. Flexible, stretchable, and rechargeable fiber-shaped zinc-air battery based on cross-stacked carbon nanotube sheets. Angew. Chem. , Int. Ed. 2015, 54, 15390–15394.

3

Liu, L. L.; Niu, Z. Q.; Chen, J. Unconventional supercapacitors from nanocarbon-based electrode materials to device configurations. Chem. Soc. Rev. 2016, 45, 4340–4363.

4

Liu, L. L.; Niu, Z. Q.; Chen, J. Design and integration of flexible planar micro-supercapacitors. Nano Res. 2017, 10, 1524–1544.

5

Chen, C.; Cao, J.; Lu, Q. Q.; Wang, X. Y.; Song, L.; Niu, Z. Q.; Chen, J. Foldable all-solid-state supercapacitors integrated with photodetectors. Adv. Funct. Mater. 2017, 27, 1604639.

6

Liu, F.; Song, S. Y.; Xue, D. F.; Zhang, H. J. Folded structured graphene paper for high performance electrode materials. Adv. Mater. 2012, 24, 1089–1094.

7

Sundramoorthy, A. K.; Wang, Y. C.; Gunasekaran, S. Low-temperature solution process for preparing flexible transparent carbon nanotube film for use in flexible supercapacitors. Nano Res. 2015, 8, 3430–3445.

8

Wang, X. F.; Liu, B.; Hou, X. J.; Wang, Q. F.; Li, W. W.; Chen, D.; Shen, G. Z. Ultralong-life and high-rate web-like Li4Ti5O12 anode for high-performance flexible lithium-ion batteries. Nano Res. 2014, 7, 1073–1082.

9

Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 2012, 11, 19–29.

10

Liang, J.; Sun, Z. H.; Li, F.; Cheng, H. M. Carbon materials for Li-S batteries: Functional evolution and performance improvement. Energy Storage Mater. 2016, 2, 76–106.

11

Seh, Z. W.; Sun, Y. M.; Zhang, Q. F.; Cui, Y. Designing high-energy lithium-sulfur batteries. Chem. Soc. Rev. 2016, 45, 5605–5634.

12

Cao, J.; Chen, C.; Zhao, Q.; Zhang, N.; Lu, Q. Q.; Wang, X. Y.; Niu, Z. Q.; Chen, J. A flexible nanostructured paper of a reduced graphene oxide-sulfur composite for high-performance lithium-sulfur batteries with unconventional configurations. Adv. Mater. 2016, 28, 9629–9636.

13

Peng, H. J.; Zhang, Z. W.; Huang, J. Q.; Zhang, G.; Xie, J.; Xu, W. T.; Shi, J. L.; Chen, X.; Cheng, X. B.; Zhang, Q. A cooperative interface for highly efficient lithium-sulfur batteries. Adv. Mater. 2016, 28, 9551–9558.

14

Chung, S. H.; Chang, C. H.; Manthiram, A. A core-shell electrode for dynamically and statically stable Li-S battery chemistry. Energy Environ. Sci. 2016, 9, 3188–3200.

15

Manthiram, A.; Fu, Y. Z.; Chung, S. H.; Zu, C. X.; Su, Y. S. Rechargeable lithium-sulfur batteries. Chem. Rev. 2014, 114, 11751–11787.

16

Manthiram, A.; Fu, Y. Z.; Su, Y. S. Challenges and prospects of lithium–sulfur batteries. Acc. Chem. Res. 2013, 46, 1125–1134.

17

Nelson, J.; Misra, S.; Yang, Y.; Jackson, A.; Liu, Y. J.; Wang, H. L.; Dai, H. J.; Andrews, J. C.; Cui, Y.; Toney, M. F. In operando X-ray diffraction and transmission X-ray microscopy of lithium sulfur batteries. J. Am. Chem. Soc. 2012, 134, 6337–6343.

18

Seh, Z. W.; Li, W. Y.; Cha, J. J.; Zheng, G. Y.; Yang, Y.; McDowell, M. T.; Hsu, P. C.; Cui, Y. Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long–cycle lithium–sulphur batteries. Nat. Commun. 2013, 4, 1331.

19

Liu, X.; Huang, J. Q.; Zhang, Q.; Mai, L. Q. Nanostructured metal oxides and sulfides for lithium-sulfur batteries. Adv. Mater. 2017, 29, 1601759.

20

Li, H. F.; Yang, X. W.; Wang, X. M.; Liu, M. N.; Ye, F. M.; Wang, J.; Qiu, Y. C.; Li, W. F.; Zhang, Y. G. Dense integration of graphene and sulfur through the soft approach for compact lithium/sulfur battery cathode. Nano Energy 2015, 12, 468–475.

21

Tao, X. Y.; Wang, J. G.; Liu, C.; Wang, H. T.; Yao, H. B.; Zheng, G. Y.; Seh, Z. W.; Cai, Q. X.; Li, W. Y.; Zhou, G. M. et al. Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium-sulfur battery design. Nat. Commun. 2016, 7, 11203.

22

Evers, S.; Nazar, L. F. New approaches for high energy density lithium-sulfur battery cathodes. Acc. Chem. Res. 2013, 46, 1135–1143.

23

Yin, Y. X.; Xin, S.; Guo, Y. G.; Wan, L. J. Lithium-sulfur batteries: Electrochemistry, materials, and prospects. Angew. Chem. , Int. Ed. 2013, 52, 13186–13200.

24

Papandrea, B.; Xu, X.; Xu, Y. X.; Chen, C. Y.; Lin, Z. Y.; Wang, G. M.; Luo, Y. Z.; Liu, M.; Huang, Y. Q.; Mai, L. Q. et al. Three-dimensional graphene framework with ultra-high sulfur content for a robust lithium-sulfur battery. Nano Res. 2016, 9, 240–248.

25

Huang, J. Q.; Zhang, Q.; Wei, F. Multi-functional separator/interlayer system for high-stable lithium-sulfur batteries: Progress and prospects. Energy Storage Mater. 2015, 1, 127–145.

26

Zhao, Q.; Hu, X. F.; Zhang, K.; Zhang, N.; Hu, Y. X.; Chen, J. Sulfur nanodots electrodeposited on Ni foam as high-performance cathode for Li-S batteries. Nano Lett. 2015, 15, 721–726.

27

Sun, Z. H.; Zhang, J. Q.; Yin, L. C.; Hu, G. J.; Fang, R. P.; Cheng, H. M.; Li, F. Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries. Nat. Commun. 2017, 8, 14627.

28

Yuan, Z.; Peng, H. J.; Hou, T. Z.; Huang, J. Q.; Chen, C. M.; Wang, D. W.; Cheng, X. B.; Wei, F.; Zhang, Q. Powering lithium-sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts. Nano Lett. 2016, 16, 519–527.

29

Zuo, P. J.; Zhang, W.; Hua, J. F.; Ma, Y. L.; Du, C. Y.; Cheng, X. Q.; Gao, Y. Z.; Yin, G. P. A novel one-dimensional reduced graphene oxide/sulfur nanoscroll material and its application in lithium sulfur batteries. Electrochimi. Acta 2016, 222, 1861–1869.

30

Sun, Q.; Fang, X.; Weng, W.; Deng, J.; Chen, P. N.; Ren, J.; Guan, G. Z.; Wang, M.; Peng, H. S. An aligned and laminated nanostructured carbon hybrid cathode for high-performance lithium-sulfur batteries. Angew. Chem. , Int. Ed. 2015, 54, 10539–10544.

31

Pang, Q.; Tang, J. T.; Huang, H.; Liang, X.; Hart, C.; Tam, K. C.; Nazar, L. F. A nitrogen and sulfur dual-doped carbon derived from polyrhodanine@cellulose for advanced lithium-sulfur batteries. Adv. Mater. 2015, 27, 6021–6028.

32

Hu, G. J.; Xu, C.; Sun, Z. H.; Wang, S. G.; Cheng, H. M.; Li, F.; Ren, W. C. 3D graphene-foam-reduced-graphene-oxide hybrid nested hierarchical networks for high-performance Li-S batteries. Adv. Mater. 2016, 28, 1603–1609.

33

Yuan, Z.; Peng, H. J.; Huang, J. Q.; Liu, X. Y.; Wang, D. W.; Cheng, X. B.; Zhang, Q. Hierarchical free-standing carbon-nanotube paper electrodes with ultrahigh sulfur-loading for lithium-sulfur batteries. Adv. Funct. Mater. 2014, 24, 6105–6112.

34

Hu, G. J.; Sun, Z. H.; Shi, C.; Fang, R. P.; Chen, J.; Hou, P. X.; Liu, C.; Cheng, H. M.; Li, F. A sulfur-rich copolymer@ CNT hybrid cathode with dual-confinement of polysulfides for high-performance lithium-sulfur batteries. Adv. Mater. 2017, 29, 1603835.

35

Xi, K.; Chen, B. G.; Li, H. L.; Xie, R. S.; Gao, C. L.; Zhang, C.; Kumar, R. V.; Robertson, J. Soluble polysulphide sorption using carbon nanotube forest for enhancing cycle performance in a lithium-sulphur battery. Nano Energy 2015, 12, 538–546.

36

Yang, C. P.; Yin, Y. X.; Guo, Y. G.; Wan, L. J. Electrochemical (de)lithiation of 1D sulfur chains in Li-S batteries: A model system study. J. Am. Chem. Soc. 2015, 137, 2215–2218.

37

Zhou, G. M.; Wang, D. W.; Li, F.; Hou, P. X.; Yin, L. C.; Liu, C.; Lu, G. Q.; Gentle, I. R.; Cheng, H. M. A flexible nanostructured sulphur-carbon nanotube cathode with high rate performance for Li-S batteries. Energy Environ. Sci. 2012, 5, 8901–8906.

38

Shehzad, K.; Xu, Y.; Gao, C.; Duan, X. F. Three-dimensional macro-structures of two-dimensional nanomaterials. Chem. Soc. Rev. 2016, 45, 5541–5588.

39

Zhou, G. M.; Yin, L. C.; Wang, D. W.; Li, L.; Pei, S. F.; Gentle, I. R.; Li, F.; Cheng, H. M. Fibrous hybrid of graphene and sulfur nanocrystals for high-performance lithium-sulfur batteries. ACS Nano 2013, 7, 5367–5375.

40

Dikin, D. A.; Stankovich, S.; Zimney, E. J.; Piner, R. D.; Dommett, G. H. B.; Evmenenko, G.; Nguyen, S. T.; Ruoff, R. S. Preparation and characterization of graphene oxide paper. Nature 2007, 448, 457–460.

41

Tung, V. C.; Huang, J. H.; Tevis, I.; Kim, F.; Kim, J.; Chu, C. W.; Stupp, S. I.; Huang, J. X. Surfactant-free water-processable photoconductive all-carbon composite. J. Am. Chem. Soc. 2011, 133, 4940–4947.

42

Liu, L. L.; Niu, Z. Q.; Zhang, L.; Zhou, W. Y.; Chen, X. D.; Xie, S. S. Nanostructured graphene composite papers for highly flexible and foldable supercapacitors. Adv. Mater. 2014, 26, 4855–4862.

43

Braga, S. F.; Coluci, V. R.; Legoas, S. B.; Giro, R.; Galvão, D. S.; Baughman, R. H. Structure and dynamics of carbon nanoscrolls. Nano Lett. 2004, 4, 881–884.

44

Zhao, J. P.; Yang, B. J.; Yang, Z.; Zhang, P.; Zheng, Z. M.; Ren, W. C.; Yan, X. B. Facile preparation of large-scale graphene nanoscrolls from graphene oxide sheets by cold quenching in liquid nitrogen. Carbon 2014, 79, 470–477.

45

Zheng, J.; Liu, H. T.; Wu, B.; Guo, Y. L.; Wu, T.; Yu, G.; Liu, Y. Q.; Zhu, D. B. Production of high-quality carbon nanoscrolls with microwave spark assistance in liquid nitrogen. Adv. Mater. 2011, 23, 2460–2463.

46

Xu, Z.; Zheng, B. N.; Chen, J. W.; Gao, C. Highly efficient synthesis of neat graphene nanoscrolls from graphene oxide by well-controlled lyophilization. Chem. Mater. 2014, 26, 6811–6818.

47

Han, K.; Liu, Z.; Shen, J. M.; Lin, Y. Y.; Dai, F.; Ye, H. Q. a free-standing and ultralong-life lithium-selenium battery cathode enabled by 3D mesoporous carbon/graphene hierarchical architecture. Adv. Funct. Mater. 2015, 25, 455–463.

48

He, G.; Hart, C. J.; Liang, X.; Garsuch, A.; Nazar, L. F. Stable cycling of a scalable graphene-encapsulated nanocomposite for lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2014, 6, 10917–10923.

49

Niu, Z. Q.; Chen, J.; Hng, H. H.; Ma, J.; Chen, X. D. A leavening strategy to prepare reduced graphene oxide foams. Adv. Mater. 2012, 24, 4144–4150.

50

Zhang, F. F.; Zhang, X. B.; Dong, Y. H.; Wang, L. M. Facile and effective synthesis of reduced graphene oxide encapsulated sulfur via oil/water system for high performance lithium sulfur cells. J. Mater. Chem. 2012, 22, 11452–11454.

51

Zhang, J.; Yang, C. P.; Yin, Y. X.; Wan, L. J.; Guo, Y. G. sulfur encapsulated in graphitic carbon nanocages for high-rate and long-cycle lithium-sulfur batteries. Adv. Mater. 2016, 28, 9539–9544.

52

Li, Z.; Zhang, J. T.; Lou, X. W. Hollow carbon nanofibers filled with MnO2 nanosheets as efficient sulfur hosts for lithium-sulfur batteries. Angew. Chem. , Int. Ed. 2015, 54, 12886–12890.

53

Zhang, K.; Zhao, Q.; Tao, Z. L.; Chen, J. Composite of sulfur impregnated in porous hollow carbon spheres as the cathode of Li-S batteries with high performance. Nano Res. 2013, 6, 38–46.

54

Li, G. X.; Sun, J. H.; Hou, W. P.; Jiang, S. D.; Huang, Y.; Geng, J. X. Three-dimensional porous carbon composites containing high sulfur nanoparticle content for high-performance lithium-sulfur batteries. Nat. Commun. 2016, 7, 10601.

55

Zhang, C.; Lv, W.; Zhang, W. G.; Zheng, X. Y.; Wu, M. B.; Wei, W.; Tao, Y.; Li, Z. J.; Yang, Q. H. Reduction of graphene oxide by hydrogen sulfide: A promising strategy for pollutant control and as an electrode for Li-S batteries. Adv. Energy Mater. 2014, 4, 1301565.

56

Wang, C.; Wang, X. S.; Wang, Y. J.; Chen, J. T.; Zhou, H. H.; Huang, Y. H. Macroporous free-standing nano-sulfur/reduced graphene oxide paper as stable cathode for lithium-sulfur battery. Nano Energy 2015, 11, 678–686.

57

Ji, L. W.; Rao, M. M.; Zheng, H. M.; Zhang, L.; Li, Y. C.; Duan, W. H.; Guo, J. H.; Cairns, E. J.; Zhang, Y. G. Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells. J. Am. Chem. Soc. 2011, 133, 18522–18525.

58

Zhang, L.; Ji, L. W.; Glans, P. A.; Zhang, Y. G.; Zhu, J. F.; Guo, J. H. Electronic structure and chemical bonding of a graphene oxide-sulfur nanocomposite for use in superior performance lithium-sulfur cells. Phys. Chem. Chem. Phys. 2012, 14, 13670–13675.

59

Hou, T. Z.; Chen, X.; Peng, H. J.; Huang, J. Q.; Li, B. Q.; Zhang, Q.; Li, B. Design principles for heteroatom-doped nanocarbon to achieve strong anchoring of polysulfides for lithium-sulfur batteries. Small 2016, 12, 3283–3291.

60

Li, B.; Li, S. M.; Liu, J. H.; Wang, B.; Yang, S. B. Vertically aligned sulfur-graphene nanowalls on substrates for ultrafast lithium-sulfur batteries. Nano Lett. 2015, 15, 3073–3079.

61

Wang, Z. Y.; Dong, Y. F.; Li, H. J.; Zhao, Z. B.; Wu, H. B.; Hao, C.; Liu, S. H.; Qiu, J. S.; Lou, X. W. Enhancing lithium-sulphur battery performance by strongly binding the discharge products on amino-functionalized reduced graphene oxide. Nat. Commun. 2014, 5, 5002.

62

Yuan, S. Y.; Guo, Z. Y.; Wang, L. N.; Hu, S.; Wang, Y. G.; Xia, Y. Y. Leaf-like graphene-oxide-wrapped sulfur for high-performance lithium-sulfur battery. Adv. Sci. 2015, 2, 1500071.

63

Lin, C.; Niu, C. J.; Xu, X.; Li, K.; Cai, Z. Y.; Zhang, Y. L.; Wang, X. P.; Qu, L. B.; Xu, Y. X.; Mai, L. Q. A facile synthesis of three dimensional graphene sponge composited with sulfur nanoparticles for flexible Li-S cathodes. Phys. Chem. Chem. Phys. 2016, 18, 22146–22153.

64

Ahn, W.; Seo, M. H.; Jun, Y. S.; Lee, D. U.; Hassan, F. M.; Wang, X. L.; Yu, A. P.; Chen, Z. W. Sulfur nanogranular film-coated three-dimensional graphene sponge-based high power lithium sulfur battery. ACS Appl. Mater. Interfaces 2016, 8, 1984–1991.

65

Evers, S.; Nazar, L. F. Graphene-enveloped sulfur in a one pot reaction: A cathode with good coulombic efficiency and high practical sulfur content. Chem. Commun. 2012, 48, 1233–1235.

66

Yu, M. P.; Wang, A. J.; Tian, F. Y.; Song, H. Q.; Wang, Y. S.; Li, C.; Hong, J. D.; Shi, G. Q. Dual-protection of a graphene-sulfur composite by a compact graphene skin and an atomic layer deposited oxide coating for a lithium-sulfur battery. Nanoscale 2015, 7, 5292–5298.

67

Luo, S. W.; Yao, M. J.; Lei, S.; Yan, P. Z.; Wei, X.; Wang, X. T.; Liu, L. L.; Niu, Z. Q. Freestanding reduced graphene oxide-sulfur composite films for highly stable lithium-sulfur batteries. Nanoscale 2017, 9, 4646–4651.

68

Jin, J.; Wen, Z. Y.; Ma, G. Q.; Lu, Y.; Cui, Y. M.; Wu, M. F.; Liang, X.; Wu, X. W. Flexible self-supporting graphene-sulfur paper for lithium sulfur batteries. RSC Adv. 2013, 3, 2558–2560.

69

Xi, K.; Kidambi, P. R.; Chen, R. J.; Gao, C. L.; Peng, X. Y.; Ducati, C.; Hofmann, S.; Kumar, R. V. Binder free three-dimensional sulphur/few-layer graphene foam cathode with enhanced high-rate capability for rechargeable lithium sulphur batteries. Nanoscale 2014, 6, 5746–5753.

70

Chung, S. H.; Manthiram, A. A polyethylene glycol-supported microporous carbon coating as a polysulfide trap for utilizing pure sulfur cathodes in lithium-sulfur batteries. Adv. Mater. 2014, 26, 7352–7357.

71

Zhou, G. M.; Pei, S. F.; Li, L.; Wang, D. W.; Wang, S. G.; Huang, K.; Yin, L. C.; Li, F.; Cheng, H. M. A graphene-pure-sulfur sandwich structure for ultrafast, long-life lithium-sulfur batteries. Adv. Mater. 2014, 26, 625–631.

72

Liu, M.; Zhou, D.; Jiang, H. R.; Ren, Y. X.; Kang, F. Y.; Zhao, T. S. A highly-safe lithium-ion sulfur polymer battery with SnO2 anode and acrylate-based gel polymer electrolyte. Nano Energy 2016, 28, 97–105.

73

He, J. R.; Chen, Y. F.; Lv, W. Q.; Wen, K. C.; Xu, C.; Zhang, W. L.; Qin, W.; He, W. D. Three-dimensional CNT/graphene-Li2S aerogel as freestanding cathode for high-performance Li-S batteries. ACS Energy Lett. 2016, 1, 820–826.

74

Lu, L. Q.; Lu, L. J.; Wang, Y. Sulfur film-coated reduced graphene oxide composite for lithium-sulfur batteries. J. Mater. Chem. A 2013, 1, 9173–9181.

75

Sun, H.; Xu, G. L.; Xu, Y. F.; Sun, S. G.; Zhang, X. F.; Qiu, Y. C.; Yang, S. H. A composite material of uniformly dispersed sulfur on reduced graphene oxide: Aqueous one-pot synthesis, characterization and excellent performance as the cathode in rechargeable lithium-sulfur batteries. Nano Res. 2012, 5, 726–738.

76

Chung, S. H.; Chang, C. H.; Manthiram, A. Robust, ultra-tough flexible cathodes for high-energy Li-S batteries. Small 2016, 12, 939–950.

77

Zeng, L. C.; Yao, Y.; Shi, J. N.; Jiang, Y.; Li, W. H.; Gu, L.; Yu, Y. A flexible S1–xSex@porous carbon nanofibers (x ≤ 0.1) thin film with high performance for Li-S batteries and room-temperature Na-S batteries. Energy Storage Mater. 2016, 5, 50–57.

78

Peng, H. J.; Xu, W. T.; Zhu, L.; Wang, D. W.; Huang, J. Q.; Cheng, X. B.; Yuan, Z.; Wei, F.; Zhang, Q. 3D carbonaceous current collectors: The origin of enhanced cycling stability for high-sulfur-loading lithium-sulfur batteries. Adv. Funct. Mater. 2016, 26, 6351–6358.

79

He, G.; Ji, X. L.; Nazar, L. High "C" rate Li-S cathodes: Sulfur imbibed bimodal porous carbons. Energy Environ. Sci. 2011, 4, 2878–2883.

80

Cheng, X. B.; Yan, C.; Huang, J. Q.; Li, P.; Zhu, L.; Zhao, L. D.; Zhang, Y. Y.; Zhu, W. C.; Yang, S. T.; Zhang, Q. The gap between long lifespan Li-S coin and pouch cells: The importance of lithium metal anode protection. Energy Storage Mater. 2017, 6, 18–25.

81

Risse, S.; Angioletti-Uberti, S.; Dzubiella, J.; Ballauff, M. Capacity fading in lithium/sulfur batteries: A linear four-state model. J. Power Sources 2014, 267, 648–654.

Nano Research
Pages 1345-1357
Cite this article:
Chen K, Cao J, Lu Q, et al. Sulfur nanoparticles encapsulated in reduced graphene oxide nanotubes for flexible lithium-sulfur batteries. Nano Research, 2018, 11(3): 1345-1357. https://doi.org/10.1007/s12274-017-1749-2

720

Views

80

Crossref

N/A

Web of Science

86

Scopus

5

CSCD

Altmetrics

Received: 14 May 2017
Revised: 15 June 2017
Accepted: 23 June 2017
Published: 02 February 2018
© Tsinghua University Press and Springer-Verlag GmbH Germany 2017
Return