AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Multifunctional SnO2/3D graphene hybrid materials for sodium-ion and lithium-ion batteries with excellent rate capability and long cycle life

Jung-In Lee1,§Junhua Song1,§Younghwan Cha1Shaofang Fu1Chengzhou Zhu1Xiaolin Li2Yuehe Lin1,3( )Min-Kyu Song1( )
School of Mechanical and Materials Engineering Washington State University PullmanWA 99164 USA
Energy & Environment Directorate Pacific Northwest National LaboratoryRichlandWA 99352 USA
Pacific Northwest National LaboratoryRichlandWA 99352 USA

§ Jung-In Lee and Junhua Song contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

SnO2 is a promising material for both Li-ion and Na-ion batteries owing to its high theoretical capacities. Unfortunately, the electrochemical performance of SnO2 is unsatisfactory because of the large volume change that occurs during cycling, low electronic conductivity of inactive oxide matrix, and poor kinetics, which are particularly severe in Na-ion batteries. Herein, ultra-fine SnO2 nanocrystals anchored on a unique three-dimensional (3D) porous reduced graphene oxide (rGO) matrix are described as promising bifunctional electrodes for Li-ion and Na-ion batteries with excellent rate capability and long cycle life. Ultra-fine SnO2 nanocrystals of size ~6 nm are well-coordinated to the graphene sheets that comprise the 3D macro-porous structure. Notably, superior rate capability was obtained up to 3 C (1/n C is a measure of the rate that allows the cell to be charged/discharged in n h) for both batteries. In situ X-ray diffractometry measurements during lithiation (or sodiation) and delithiation (or desodiation) were combined with various electrochemical techniques to reveal the real-time phase evolution. This critical information was linked with the internal resistance, ion diffusivity (DLi+ and DNa+), and the unique structure of the composite electrode materials to explain their excellent electrochemical performance. The improved capacity and superior rate capabilities demonstrated in this work can be ascribed to the enhanced transport kinetics of both electrons and ions within the electrode structure because of the well-interconnected, 3D macro-porous rGO matrix. The porous rGO matrix appears to play a more important role in sodium-ion batteries (SIBs), where the larger mass/radius of Na-ions are marked concerns.

Electronic Supplementary Material

Download File(s)
nr-10-12-4398_ESM.pdf (3.4 MB)

References

1

Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.

2

Kang, H. Y.; Liu, Y. C.; Cao, K. Z.; Zhao, Y.; Jiao, L. F.; Wang, Y. J.; Yuan, H. T. Update on anode materials for Na-ion batteries. J. Mater. Chem. A 2015, 3, 17899–17913.

3

Hong, S. Y.; Kim, Y.; Park, Y.; Choi, A.; Choi, N.-S.; Lee, K. T. Charge carriers in rechargeable batteries: Na ions vs. Li ions. Energy Environ. Sci. 2013, 6, 2067–2081.

4

Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Research development on sodium-ion batteries. Chem. Rev. 2014, 114, 11636–11682.

5

Kim, H.; Kim, H.; Ding, Z.; Lee, M. H.; Lim, K.; Yoon, G.; Kang, K. Recent progress in electrode materials for sodium- ion batteries. Adv. Energy Mater. 2016, 6, 1600943.

6

Han, M. H.; Gonzalo, E.; Singh, G.; Rojo, T. A comprehensive review of sodium layered oxides: Powerful cathodes for Na-ion batteries. Energy Environ. Sci. 2015, 8, 81–102.

7

Kundu, D.; Talaie, E.; Duffort, V.; Nazar, L. F. The emerging chemistry of sodium ion batteries for electrochemical energy storage. Angew. Chem., Int. Ed. 2015, 54, 3431–3448.

8

Kim, S.-W.; Seo, D.-H.; Ma, X. H.; Ceder, G.; Kang, K. Electrode materials for rechargeable sodium-ion batteries: Potential alternatives to current lithium-ion batteries. Adv. Energy Mater. 2012, 2, 710–721.

9

Slater, M. D.; Kim, D.; Lee, E.; Johnson, C. S. Sodium-ion batteries. Adv. Funct. Mater. 2013, 23, 947–958.

10

Pan, H. L.; Hu, Y.-S.; Chen, L. Q. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ. Sci. 2013, 6, 2338–2360.

11

Lei, Y. C.; Li, X.; Liu, L.; Ceder, G. Synthesis and stoichiometry of different layered sodium cobalt oxides. Chem. Mater. 2014, 26, 5288–5296.

12

Yuan, D. D.; Wang, Y. X.; Cao, Y. L.; Ai, X. P.; Yang, H. X. Improved electrochemical performance of Fe-substituted NaNi0.5Mn0.5O2 cathode materials for sodium-ion batteries. ACS Appl. Mater. Interfaces 2015, 7, 8585–8591.

13

Talaie, E.; Duffort, V.; Smith, H. L.; Fultz, B.; Nazar, L. F. Structure of the high voltage phase of layered P2-Na2/3–z[Mn1/2Fe1/2]O2 and the positive effect of Ni substitution on its stability. Energy Environ. Sci. 2015, 8, 2512–2523.

14

Zheng, J. M.; Yan, P. F.; Kan, W. H.; Wang, C. M.; Manthiram, A. A spinel-integrated P2-type layered composite: High-rate cathode for sodium-ion batteries. J. Electrochem. Soc. 2016, 163, A584–A591.

15

Barpanda, P.; Oyama, G.; Nishimura, S.-I.; Chung, S.-C.; Yamada, A. A 3.8-V earth-abundant sodium battery electrode. Nat. Commun. 2014, 5, 4358.

16

Moreau, P.; Guyomard, D.; Gaubicher, J.; Boucher, F. Structure and stability of sodium intercalated phases in olivine FePO4. Chem. Mater. 2010, 22, 4126–4128.

17

Masquelier, C.; Croguennec, L. Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries. Chem. Rev. 2013, 113, 6552–6591.

18

Jian, Z. L.; Han, W. Z.; Lu, X.; Yang, H. X.; Hu, Y. S.; Zhou, J.; Zhou, Z. B.; Li, J. Q.; Chen, W.; Chen, D. F. et al. Superior electrochemical performance and storage mechanism of Na3V2(PO4)3 cathode for room‐temperature sodium‐ion batteries. Adv. Energy Mater. 2013, 3, 156–160.

19

Ellis, B. L.; Makahnouk, W. R. M.; Makimura, Y.; Toghill, K.; Nazar, L. F. A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries. Nat. Mater. 2007, 6, 749–753.

20

Li, W.; Zhou, M.; Li, H. M.; Wang, K. L.; Cheng, S. J.; Jiang, K. A high performance sulfur-doped disordered carbon anode for sodium ion batteries. Energy Environ. Sci. 2015, 8, 2916–2921.

21

Wang, H.-G.; Yuan, S.; Ma, D.-L.; Zhang, X.-B.; Yan, J.-M. Electrospun materials for lithium and sodium rechargeable batteries: From structure evolution to electrochemical performance. Energy Environ. Sci. 2015, 8, 1660–1681.

22

Wenzel, S.; Hara, T.; Janek, J.; Adelhelm, P. Room- temperature sodium-ion batteries: Improving the rate capability of carbon anode materials by templating strategies. Energy Environ. Sci. 2011, 4, 3342–3345.

23

Yang, T. Z.; Qian, T.; Wang, M. F.; Shen, X. W.; Xu, N.; Sun, Z. Z.; Yan, C. L. A Sustainable route from biomass byproduct okara to high content nitrogen-doped carbon sheets for efficient sodium ion batteries. Adv. Mater. 2016, 28, 539–545.

24

Xiong, H.; Slater, M. D.; Balasubramanian, M.; Johnson, C. S.; Rajh, T. Amorphous TiO2 nanotube anode for rechargeable sodium ion batteries. J. Phys. Chem. Lett. 2011, 2, 2560–2565.

25

Liu, H. Q.; Cao, K. Z.; Xu, X. H.; Jiao, L. F.; Wang, Y. J.; Yuan, H. T. Ultrasmall TiO2 nanoparticles in situ growth on graphene hybrid as superior anode material for sodium/ lithium ion batteries. ACS Appl. Mater. Interfaces 2015, 7, 11239–11245.

26

Kim, K.-T.; Ali, G.; Chung, K. Y.; Yoon, C. S.; Yashiro, H.; Sun, Y.-K.; Lu, J.; Amine, K.; Myung, S.-T. Anatase titania nanorods as an intercalation anode material for rechargeable sodium batteries. Nano Lett. 2014, 14, 416–422.

27

Chen, C. J.; Wen, Y. W.; Hu, X. L.; Ji, X. L.; Yan, M. Y.; Mai, L. Q.; Hu, P.; Shan, B.; Huang, Y. H. Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling. Nat. Commun. 2015, 6, 6929.

28

Wu, L. M.; Bresser, D.; Buchholz, D.; Giffin, G. A.; Castro, C. R.; Ochel, A.; Passerini, S. Unfolding the mechanism of sodium insertion in anatase TiO2 nanoparticles. Adv. Energy Mater. 2015, 5, 1401142.

29

Koo, B.; Chattopadhyay, S.; Shibata, T.; Prakapenka, V. B.; Johnson, C. S.; Rajh, T.; Shevchenko, E. V. Intercalation of sodium ions into hollow iron oxide nanoparticles. Chem. Mater. 2013, 25, 245–252.

30

Hariharan, S.; Saravanan, K.; Ramar, V.; Balaya, P. A rationally designed dual role anode material for lithium-ion and sodium-ion batteries: Case study of eco-friendly Fe3O4. Phys. Chem. Chem. Physics 2013, 15, 2945–2953.

31

Jiang, Y. Z.; Hu, M. J.; Zhang, D.; Yuan, T. Z.; Sun, W. P.; Xu, B.; Yan, M. Transition metal oxides for high performance sodium ion battery anodes. Nano Energy 2014, 5, 60–66.

32

Yuan, S.; Huang, X. L.; Ma, D. L.; Wang, H. G.; Meng, F. Z.; Zhang, X. B. Engraving copper foil to give large-scale binder-free porous CuO arrays for a high-performance sodium-ion battery anode. Adv. Mater. 2014, 26, 2273–2279.

33

Wang, J. W.; Liu, X. H.; Mao, S. X.; Huang, J. Y. Microstructural evolution of tin nanoparticles during in situ sodium insertion and extraction. Nano Lett. 2012, 12, 5897–5902.

34

Yabuuchi, N.; Matsuura, Y.; Ishikawa, T.; Kuze, S.; Son, J. Y.; Cui, Y. T.; Oji, H.; Komaba, S. Phosphorus electrodes in sodium cells: Small volume expansion by sodiation and the surface-stabilization mechanism in aprotic solvent. ChemElectroChem 2014, 1, 580–589.

35

Kim, Y.; Park, Y.; Choi, A.; Choi, N. S.; Kim, J.; Lee, J.; Ryu, J. H.; Oh, S. M.; Lee, K. T. An amorphous red phosphorus/carbon composite as a promising anode material for sodium ion batteries. Adv. Mater. 2013, 25, 3045–3049.

36

Jung, S. C.; Jung, D. S.; Choi, J. W.; Han, Y. K. Atom-level understanding of the sodiation process in silicon anode material. J. Phys. Chem. Lett. 2014, 5, 1283–1288.

37

Bommier, C.; Ji, X. L. Recent development on anodes for Na-ion batteries. Isr. J. Chem. 2015, 55, 486–507.

38

Wang, H.; Liang, Q. Q.; Wang, W. J.; An, Y. R.; Li, J. H.; Guo, L. Preparation of flower-like SnO2 nanostructures and their applications in aas-sensing and lithium storage. Cryst. Growth Des. 2011, 11, 2942–2947.

39

Su, D. W.; Ahn, H. J.; Wang, G. X. SnO2@graphene nanocomposites as anode materials for Na-ion batteries with superior electrochemical performance. Chem. Commun. 2013, 49, 3131–3133.

40

Hu, R. Z.; Chen, D. C.; Waller, G.; Ouyang, Y. P.; Chen, Y.; Zhao, B. T.; Rainwater, B.; Yang, C. H.; Zhu, M.; Liu, M. L. Dramatically enhanced reversibility of Li2O in SnO2-based electrodes: The effect of nanostructure on high initial reversible capacity. Energy Environ. Sci. 2016, 9, 595–603.

41

Ding, J.; Li, Z.; Wang, H. L.; Cui, K.; Kohandehghan, A.; Tan, X. H.; Karpuzov, D.; Mitlin, D. Sodiation vs. lithiation phase transformations in a high rate–high stability SnO2 in carbon nanocomposite. J. Mater. Chem. A 2015, 3, 7100–7111.

42

Xiao, L. F.; Cao, Y. L.; Xiao, J.; Wang, W.; Kovarik, L.; Nie, Z. M.; Liu, J. High capacity, reversible alloying reactions in SnSb/C nanocomposites for Na-ion battery applications. Chem. Commun. 2012, 48, 3321–3323.

43

Li, Z.; Ding, J.; Wang, H. L.; Cui, K.; Stephenson, T.; Karpuzov, D.; Mitlin, D. High rate SnO2–graphene dual aerogel anodes and their kinetics of lithiation and sodiation. Nano Energy 2015, 15, 369–378.

44

Yang, S.; Yue, W. B.; Zhu, J.; Ren, Y.; Yang, X. J. Graphene- based mesoporous SnO2 with enhanced electrochemical performance for lithium-ion batteries. Adv. Funct. Mater. 2013, 23, 3570–3576.

45

Hu, X.; Zeng, G.; Chen, J. X.; Lu, C. Z.; Wen, Z. H. 3D graphene network encapsulating SnO2 hollow spheres as a high-performance anode material for lithium-ion batteries. J. Mater. Chem. A 2017, 5, 4535–4542.

46

Fan, L. L.; Li, X. F.; Yan, B.; Feng, J. M.; Xiong, D. B.; Li, D. J.; Gu, L.; Wen, Y. R.; Lawes, S.; Sun, X. L. Controlled SnO2 crystallinity effectively dominating sodium storage performance. Adv. Energy Mater. 2016, 6, 1502057.

47

Tian, R.; Zhang, Y. Y.; Chen, Z. H.; Duan, H. N.; Xu, B. Y.; Guo, Y. P.; Kang, H. M.; Li, H.; Liu, H. Z. The effect of annealing on a 3D SnO2/graphene foam as an advanced lithium-ion battery anode. Sci. Rep. 2016, 6, 19195.

48

Sun, J. H.; Xiao, L. H.; Jiang, S. D.; Li, G. X.; Huang, Y.; Geng, J. X. Fluorine-doped SnO2@graphene porous composite for high capacity lithium-ion batteries. Chem. Mater. 2015, 27, 4594–4603.

49

Liu, L. L.; An, M. Z.; Yang, P. X.; Zhang, J. Q. Superior cycle performance and high reversible capacity of SnO2/graphene composite as an anode material for lithium-ion batteries. Sci. Rep. 2015, 5, 9055.

50

Li, Y. M.; Lv, X. J.; Lu, J.; Li, J. H. Preparation of SnO2- nanocrystal/graphene-nanosheets composites and their lithium storage ability. J. Phys. Chem. C 2010, 114, 21770–21774.

51

Cui, J.; Xu, Z. L.; Yao, S. S.; Huang, J. Q.; Huang, J. Q.; Abouali, S.; Garakani, M. A.; Ning, X. H.; Kim, J. K. Enhanced conversion reaction kinetics in low crystallinity SnO2/CNT anodes for Na-ion batteries. J. Mater. Chem. A 2016, 4, 10964–10973.

52

Chen, S.; Xin, Y. L.; Zhou, Y. Y.; Zhang, F.; Ma, Y. R.; Zhou, H. H.; Qi, L. M. Branched CNT@SnO2 nanorods@carbon hierarchical heterostructures for lithium ion batteries with high reversibility and rate capability. J. Mater. Chem. A 2014, 2, 15582–15589.

53

Wang, Y.; Su, D. W.; Wang, C. Y.; Wang, G. X. SnO2@ MWCNT nanocomposite as a high capacity anode material for sodium-ion batteries. Electrochem. Commun. 2013, 29, 8–11.

54

Kim, D.; Lee, D.; Kim, J.; Moon, J. Electrospun Ni-added SnO2–carbon nanofiber composite anode for high-performance lithium-ion batteries. ACS Appl. Mater. Interfaces 2012, 4, 5408–5415.

55

Wang, M. Y.; Li, S.; Zhang, Y. M.; Huang, J. G. Hierarchical SnO2/carbon nanofibrous composite derived from cellulose substance as anode material for lithium-ion batteries. Chem. — Eur. J. 2015, 21, 16195–16202.

56

Liu, Y.; Jiao, Y.; Yin, B. S.; Zhang, S. W.; Qu, F. Y.; Wu, X. Enhanced electrochemical performance of hybrid SnO2@MOx (M = Ni, Co, Mn) core–shell nanostructures grown on flexible carbon fibers as the supercapacitor electrode materials. J. Mater. Chem. A 2015, 3, 3676–3682.

57

Wang, M. S.; Wang, Z. Q.; Yang, Z. L.; Huang, Y.; Zheng, J. M.; Li, X. Carbon nanotube-graphene nanosheet conductive framework supported SnO2 aerogel as a high performance anode for lithium ion battery. Electrochim. Acta 2017, 240, 7–15.

58

Fan, J.; Wang, T.; Yu, C.; Tu, B.; Jiang, Z.; Zhao, D. Ordered, Nanostructured tin-based oxides/carbon composite as the negative-electrode material for lithium-ion batteries. Adv. Mater. 2004, 16, 1432–1436.

59

Pol, V. G.; Wen, J. G.; Miller, D. J.; Thackeray, M. M. Sonochemical deposition of Sn, SnO2 and Sb on spherical hard carbon electrodes for Li-ion batteries. J. Electrochem. Soc. 2014, 161, A777–A782.

60

Song, M. K.; Park, S.; Alamgir, F. M.; Cho, J.; Liu, M. L. Nanostructured electrodes for lithium-ion and lithium-air batteries: The latest developments, challenges, and perspectives. Mater. Sci. Eng. R Rep. 2011, 72, 203–252.

61

Bao, Z. H.; Song, M. K.; Davis, S. C.; Cai, Y.; Liu, M. L.; Sandhage, K. H. High surface area, micro/mesoporous carbon particles with selectable 3-D biogenic morphologies for tailored catalysis, filtration, or adsorption. Energy Environ. Sci. 2011, 4, 3980–3984.

62

Shi, Q. R.; Cha, Y.; Song, Y.; Lee, J.-I.; Zhu, C. Z.; Li, X. Y.; Song, M. K.; Du, D.; Lin, Y. H. 3D graphene-based hybrid materials: Synthesis and applications in energy storage and conversion. Nanoscale 2016, 8, 15414–15447.

63

Wei, W.; Wang, Z. H.; Liu, Z.; Liu, Y.; He, L.; Chen, D. Z.; Umar, A.; Guo, L.; Li, J. H. Metal oxide hollow nanostructures: Fabrication and Li storage performance. J. Power Sources 2013, 238, 376–387.

64

Goriparti, S.; Miele, E.; De Angelis, F.; Di Fabrizio, E.; Zaccaria, R. P.; Capiglia, C. Review on recent progress of nanostructured anode materials for Li-ion batteries. J. Power Sources 2014, 257, 421–443.

65

Li, Y. G.; Wu, Y. Y. Coassembly of graphene oxide and nanowires for large-area nanowire alignment. J. Am. Chem. Soc. 2009, 131, 5851–5857.

66

Xu, Y. X.; Sheng, K. X.; Li, C.; Shi, G. Q. Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 2010, 4, 4324–4330.

67

Wang, S. Y.; Yu, D. S.; Dai, L. M.; Chang, D. W.; Baek, J. B. Polyelectrolyte-functionalized graphene as metal-free electrocatalysts for oxygen reduction. ACS Nano 2011, 5, 6202–6209.

68

Zhu, C. Z.; Wang, P.; Wang, L.; Han, L.; Dong, S. J. Facile synthesis of two-dimensional graphene/SnO2/Pt ternary hybrid nanomaterials and their catalytic properties. Nanoscale 2011, 3, 4376–4382.

69

Tiensuu, V. H.; Ergun, S.; Alexander, L. E. X‐ray diffraction from small crystallites. J. Appl. Phys. 1964, 35, 1718–1720.

70

Lee, S. Y.; Park, K. Y.; Kim, W. S.; Yoon, S.; Hong, S. H.; Kang, K.; Kim, M. Unveiling origin of additional capacity of SnO2 anode in lithium-ion batteries by realistic ex situ TEM analysis. Nano Energy 2016, 19, 234–245.

71

Liu, L. L.; An, M. Z.; Yang, P. X.; Zhang, J. Q. Superior cycle performance and high reversible capacity of SnO2/ graphene composite as an anode material for lithium-ion batteries. Sci. Rep. 2015, 5, 9055.

72

Wang, X. Y.; Zhou, X. F.; Yao, K.; Zhang, J. G.; Liu, Z. P. A SnO2/graphene composite as a high stability electrode for lithium ion batteries. Carbon 2011, 49, 133–139.

73

Wang, Z. Y.; Zhang, H.; Li, N.; Shi, Z. J.; Gu, Z. N.; Cao, G. P. Laterally confined graphene nanosheets and graphene/ SnO2 composites as high-rate anode materials for lithium- ion batteries. Nano Res. 2010, 3, 748–756.

74

Gu, M.; Kushima, A.; Shao, Y. Y.; Zhang, J. G.; Liu, J.; Browning, N. D.; Li, J.; Wang, C. M. Probing the failure mechanism of SnO2 nanowires for sodium-ion batteries. Nano Lett. 2013, 13, 5203–5211.

75

Wang, N. N.; Bai, Z. C.; Qian, Y. T.; Yang, J. Double-walled Sb@TiO2−x nanotubes as a superior high-rate and ultralong- lifespan anode material for Na-ion and Li-ion batteries. Adv. Mater. 2016, 28, 4126–4133.

76

Zhang, K.; Hu, Z.; Liu, X.; Tao, Z. L.; Chen, J. FeSe2 microspheres as a high‐performance anode material for Na‐ion batteries. Adv. Mater. 2015, 27, 3305–3309.

77

Guo, S. H.; Yu, H. J.; Liu, P.; Ren, Y.; Zhang, T.; Chen, M. W.; Ishida, M.; Zhou, H. S. High-performance symmetric sodium-ion batteries using a new, bipolar O3-type material, Na0.8Ni0.4Ti0.6O2. Energy Environ. Sci. 2015, 8, 1237–1244.

78

Li, H. S.; Peng, L. L.; Zhu, Y.; Chen, D. H.; Zhang, X. G.; Yu, G. H. An advanced high-energy sodium ion full battery based on nanostructured Na2Ti3O7/VOPO4 layered materials. Energy Environ. Sci. 2016, 9, 3399–3405.

79

Oehl, N.; Schmuelling, G.; Knipper, M.; Kloepsch, R.; Placke, T.; Kolny-Olesiak, J.; Plaggenborg, T.; Winter, M.; Parisi, J. In situ X-ray diffraction study on the formation of α-Sn in nanocrystalline Sn-based electrodes for lithium-ion batteries. CrystEngComm 2015, 17, 8500–8504.

80

Lee, J.-I.; Ko, Y.; Shin, M.; Song, H.-K.; Choi, N.-S.; Kim, M. G.; Park, S. High-performance silicon-based multicomponent battery anodes produced via synergistic coupling of multifunctional coating layers. Energy Environ. Sci. 2015, 8, 2075–2084.

Nano Research
Pages 4398-4414
Cite this article:
Lee J-I, Song J, Cha Y, et al. Multifunctional SnO2/3D graphene hybrid materials for sodium-ion and lithium-ion batteries with excellent rate capability and long cycle life. Nano Research, 2017, 10(12): 4398-4414. https://doi.org/10.1007/s12274-017-1756-3

804

Views

68

Crossref

N/A

Web of Science

67

Scopus

0

CSCD

Altmetrics

Received: 30 April 2017
Revised: 03 July 2017
Accepted: 04 July 2017
Published: 26 August 2017
© Tsinghua University Press and Springer-Verlag GmbH Germany 2017
Return