Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Nickel cobalt sulfides (Ni-Co-S) have attracted extensive attention for application in electronic devices owing to their excellent conductivity and high electrochemical capacitance. To facilitate the large-scale practical application of Ni-Co-S, the excellent rate capability and cyclic stability of these compounds must be fully exploited. Thus, hierarchical Ni-Co-S@Ni-W-O (Ni-Co-S-W) core/shell hybrid nanosheet arrays on nickel foam were designed and synthesized herein via a facile three-step hydrothermal method, followed by annealing in a tubular furnace under argon atmosphere. The hybrid structure was directly assembled as a free-standing electrode, which exhibited a high specific capacitance of 1, 988 F·g-1 at 2 A·g-1 and retained an excellent capacitance of approximately 1, 500 F·g-1 at 30 A·g-1, which is superior to the performance of the pristine Ni-Co-S nanosheet electrode. The assembled asymmetric supercapacitors achieved high specific capacitance (155 F·g-1 at 1 A·g-1), electrochemical stability, and a high energy density of 55.1 W·h·kg-1 at a power density of 799.8 W·kg-1 with the optimized Ni-Co-S-W core/shell nanosheets as the positive electrode, activated carbon as the negative electrode, and 6 M KOH as the electrolyte.
El-Kady, M. F.; Strong, V.; Dubin, S.; Kaner, R. B. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 2012, 335, 1326–1330.
Tang, S. C.; Zhu, B. G.; Shi, X. L.; Wu, J.; Meng, X. K. General controlled sulfidation toward achieving novel nanosheet-built porous square-FeCo2S4-tube arrays for highperformance asymmetric all-solid-state pseudocapacitors. Adv. Energy Mater. 2017, 7, 1601985.
Dresselhaus, M. S.; Thomas, I. L. Alternative energy technologies. Nature 2001, 414, 332–337.
Zhu, M. S.; Huang, Y.; Huang, Y.; Pei, Z. X.; Xue, Q.; Li, H. F.; Geng, H. Y.; Zhi, C. Y. Capacitance enhancement in a semiconductor nanostructure-based supercapacitor by solar light and a self-powered supercapacitor-photodetector system. Adv. Funct. Mater. 2016, 26, 4481–4490.
Wen, L.; Li, F.; Cheng, H. M. Carbon nanotubes and graphene for flexible electrochemical energy storage: From materials to devices. Adv. Mater. 2016, 28, 4306–4337.
Liu, L. L.; Niu Z. Q.; Chen J. Design and integration of flexible planar micro-supercapacitors. Nano Res. 2017, 10, 1524–1544.
He, W. D.; Wang, C. G.; Li, H. Q.; Deng, X. L.; Xu, X. J.; Zhai, T. Y. Ultrathin and porous Ni3S2/CoNi2S4 3D-network structure for superhigh energy density asymmetric supercapacitors. Adv. Energy Mater. 2017, 1700983.
Lu, F.; Zhou, M, ; Li, W. R.; Weng, Q. H.; Li, C. L.; Xue, Y. M.; Jiang, X. F.; Zeng, X. H.; Bando, Y.; Golberg, D. Engineering sulfur vacancies and impurities in NiCo2S4 nanostructures toward optimal supercapacitive performance. Nano Energy 2016, 26, 313–323.
Li, R.; Wang, S. L.; Huang, Z. C.; Lu, F. X.; He, T. B. NiCo2S4@Co(OH)2 core-shell nanotube arrays in situ grown on Ni foam for high performances asymmetric supercapacitors. J. Power Sources 2016, 312, 156–164.
Huang, Y.; Zhu, M. S.; Huang, Y.; Pei, Z. X.; Li, H. F.; Wang, Z. F.; Xue, Q.; Zhi, C. Y. Multifunctional energy storage and conversion devices. Adv. Mater. 2016, 28, 8344–8364.
Huang, Y.; Tao, J. Y.; Meng, W. J.; Zhu, M. S.; Huang, Y.; Fu, Y. Q.; Gao, Y. H.; Zhi, C. Y. Super-high rate stretchable polypyrrole-based supercapacitors with excellent cycling stability. Nano Energy 2015, 11, 518–525.
Liu, X. X.; Shi, C. D.; Zhai, C. W.; Cheng, M. L.; Liu, Q.; Wang, G. X. Cobalt-based layered metal-organic framework as an ultrahigh capacity supercapacitor electrode material. ACS Appl. Mater. Interfaces 2016, 8, 4585–4591.
He, W. D.; Yang, W. J.; Wang, C. G.; Deng, X. L.; Liu, B. D.; Xu, X. J. Morphology-controlled syntheses of α-MnO2 for electrochemical energy storage. Phys. Chem. Chem. Phys. 2016, 18, 15235–15243.
Dong, L. B.; Xu, C. J.; Li, Y.; Wu, C. L.; Jiang, B. Z.; Yang, Q.; Zhou, E. L.; Kang, F. Y.; Yang, Q. H. Simultaneous production of high-performance flexible textile electrodes and fiber electrodes for wearable energy storage. Adv. Mater. 2016, 28, 1675–1681.
Yang, J.; Yu, C.; Fan, X. M.; Zhao, C. T.; Qiu, J. S. Ultrafast self-assembly of graphene oxide-induced monolithic NiCo-carbonate hydroxide nanowire architectures with a superior volumetric capacitance for supercapacitors. Adv. Funct. Mater. 2015, 25, 2109–2116.
Gu, S. S.; Lou, Z.; Li, L. D.; Chen, Z. J.; Ma, X. D.; Shen, G. Z. Fabrication of flexible reduced graphene oxide/Fe2O3 hollow nanospheres based on-chip micro-supercapacitors for integrated photodetecting applications. Nano Res. 2016, 9, 424–434.
Guo, K.; Ma, Y.; Li, H. Q.; Zhai, T. Y. Flexible wire-shaped supercapacitors in parallel double helix configuration with stable electrochemical properties under static/dynamic bending. Small 2016, 12, 1024–1033.
Wu, X.; Han, Z. C.; Zheng, X.; Yao, S. Y.; Yang, X.; Zhai, T. Y. Core-shell structured Co3O4@NiCo2O4 electrodes grown on flexible carbon fibers with superior electrochemical properties. Nano Energy 2017, 31, 410–417.
Zhu, J.; Tang, S. C.; Wu, J.; Shi, X. L.; Zhu, B. G.; Meng, X. K. Wearable high-performance supercapacitors based on silver-sputtered textiles with FeCo2S4–NiCo2S4 composite nanotube-built multitripod architectures as advanced flexible electrodes. Adv. Energy Mater. 2017, 7, 1601234.
Hou, L. R.; Shi, Y. Y.; Zhu, S. Q.; Rehan, M.; Pang, G.; Zhang, X. G.; Yuan, C. Z. Hollow mesoporous hetero- NiCo2S4/Co9S8 submicro-spindles: Unusual formation and excellent pseudocapacitance towards hybrid supercapacitors. J. Mater. Chem. A 2017, 5, 133–144.
Dai, S. G.; Zhao, B. T.; Qu, C.; Chen, D. C.; Dang, D.; Song, B.; de Glee, B. M.; Fu, J. W.; Hu, C. G.; Wong, C. P. et al. Controlled synthesis of three-phase NixSy/rGO nanoflake electrodes for hybrid supercapacitors with high energy and power density. Nano Energy 2017, 33, 522–531.
Niu, Z. Q.; Zhou, W. Y.; Chen, X. D.; Chen, J.; Xie, S. S. Highly compressible and all-solid-state supercapacitors based on nanostructured composite sponge. Adv. Mater. 2015, 27, 6002–6008.
Li, Y. J.; Wang, G. L.; Wei, T.; Fan, Z. J.; Yan, P. Nitrogen and sulfur co-doped porous carbon nanosheets derived from willow catkin for supercapacitors. Nano Energy 2016, 19, 165–175.
Xie, X. Q.; Makaryan, T.; Zhao, M. Q.; Van Aken, K. L.; Gogotsi, Y.; Wang, G. X. MoS2 nanosheets vertically aligned on carbon paper: A freestanding electrode for highly reversible sodium-ion batteries. Adv. Energy Mater. 2016, 6, 1502161.
Ji, H. M.; Liu, C.; Wang, T.; Chen, J.; Mao, Z. N.; Zhao, J.; Hou, W. H.; Yang, G. Porous hybrid composites of few-layer MoS2 nanosheets embedded in a carbon matrix with an excellent supercapacitor electrode performance. Small 2015, 11, 6480–6490.
Nguyen, V. H.; Shim, J. J. In situ growth of hierarchical mesoporous NiCo2S4@MnO2 arrays on nickel foam for high-performance supercapacitors. Electrochim. Acta 2015, 166, 302–309.
Hu, W.; Chen, R. Q.; Xie, W.; Zou, L. L.; Qin, N.; Bao, D. H. CoNi2S4 nanosheet arrays supported on nickel foams with ultrahigh capacitance for aqueous asymmetric supercapacitor applications. ACS Appl. Mater. Interfaces 2014, 6, 19318–19326.
Khani H.; Wipf, D. O. Iron oxide nanosheets and pulseelectrodeposited Ni–Co–S nanoflake arrays for highperformance charge storage. ACS Appl. Mater. Interfaces 2017, 9, 6967–6978.
Yang, J.; Yu, C.; Fan, X. M.; Liang, S. X.; Li, S. F.; Huang, H. W.; Ling, Z.; Hao, C.; Qiu, J. S. Electroactive edge site-enriched nickel-cobalt sulfide into graphene frameworks for highperformance asymmetric supercapacitors. Energy Environ. Sci. 2016, 9, 1299–1307.
Li, X. M.; Li, Q. G.; Wu, Y.; Rui, M. C.; Zeng, H. B. Two-dimensional, porous nickel-cobalt sulfide for high-performance asymmetric supercapacitors. ACS Appl. Mater. Interfaces 2015, 7, 19316–19323.
Guan, C.; Xia, X. H.; Meng, N.; Zeng, Z. Y.; Cao, X. H.; Soci, C.; Zhang, H.; Fan, H. J. Hollow core-shell nanostructure supercapacitor electrodes: Gap matters. Energy Environ. Sci. 2012, 5, 9085–9090.
Li, Y.; Xu, J.; Feng, T.; Yao, Q. F.; Xie, J. P.; Xia, H. Fe2O3 nanoneedles on ultrafine nickel nanotube arrays as efficient anode for high-performance asymmetric supercapacitors. Adv. Funct. Mater. 2017, 21, 1606728.
Lin, L. Y.; Tang, S.; Zhao, S. Q.; Peng, X. H.; Hu, N. Hierarchical three-dimensional FeCo2O4@MnO2 core-shell nanosheet arrays on nickel foam for high-performance supercapacitor. Electrochim. Acta 2017, 228, 175–182.
Zhou, S. S.; Chen, J. N.; Gan, L.; Zhang, Q.; Zheng, Z.; Li, H. Q.; Zhai, T. Y. Scalable production of self-supported WS2/CNFs by electrospinning as the anode for highperformance lithium-ion batteries. Sci. Bull. 2016, 61, 227–235.
Wang, X.; Zhang, S. W.; Shao, M. H.; Huang, J. Z.; Deng, X. L.; Hou, P. Y.; Xu, X. J. Fabrication of ZnO/ZnFe2O4 hollow nanocages through metal organic frameworks route with enhanced gas sensing properties. Sensor Actuat. B Chem. 2017, 251, 27–33.
Zhou, W. J.; Cao, X. H.; Zeng, Z. Y.; Shi, W. H.; Zhu, Y. Y.; Yan, Q. Y.; Liu, H.; Wang, J. Y.; Zhang, H. One-step synthesis of Ni3S2 nanorod@Ni(OH)2 nanosheet core-shell nanostructures on a three-dimensional graphene network for high-performance supercapacitors. Energy Environ. Sci. 2013, 6, 2216–2221.
Dong, L. B.; Liang, G. M.; Xu, C. J.; Liu, W. B.; Pan, Z. Z.; Zhou, E. L.; Kang, F. Y.; Yang, Q. H. Multi hierarchical construction-induced superior capacitive performances of flexible electrodes for wearable energy storage. Nano Energy 2017, 34, 242–248.
Liu, Z. H.; Tian, X. C.; Xu, X.; He, L.; Yan, M. Y.; Han, C. H.; Li, Y.; Yang, W.; Mai, L. Q. Capacitance and voltage matching between MnO2 nanoflake cathode and Fe2O3 nanoparticle anode for high-performance asymmetric microsupercapacitors. Nano Res. 2017, 10, 2471–2481.
Zhang, Y. F.; Zuo, L. Z.; Zhang, L. S.; Yan, J. J.; Lu, H. Y.; Fan, W.; Liu, T. X. Immobilization of NiS nanoparticles on N-doped carbon fiber aerogels as advanced electrode materials for supercapacitors. Nano Res. 2016, 9, 2747–2759.
Lv, Q. Y.; Wang, S.; Sun, H. Y.; Luo, J.; Xiao, J.; Xiao, J. W.; Xiao, F.; Wang, S. Solid-state thin-film supercapacitors with ultrafast charge/discharge based on N-doped-carbontubes/ Au-nanoparticles-doped-MnO2 nanocomposites. Nano Lett. 2016, 16, 40–47.
Wang, J.; Zhang, X.; Wei, Q. L.; Lv, H. M.; Tian, Y. L.; Tong, Z. Q.; Liu, X. S.; Hao, J.; Qu, H. Y.; Zhao, J. P. et al. 3D self-supported nanopine forest-like Co3O4@CoMoO4 core-shell architectures for high-energy solid state supercapacitors. Nano Energy 2016, 19, 222–233.
Chen, S. M.; Yang, G.; Jia Y.; Zheng, H. J. Three-dimensional NiCo2O4@NiWO4 core-shell nanowire arrays for high performance supercapacitors. J. Mater. Chem. A 2017, 5, 1028–1034.
He, G. J.; Li, J. M.; Li, W. Y.; Li, B.; Noor, N.; Xu, K. B.; Hu, J. Q.; Parkin, I. P. One pot synthesis of nickel foam supported self-assembly of NiWO4 and CoWO4 nanostructures that act as high performance electrochemical capacitor electrodes. J. Mater. Chem. A 2015, 3, 14272–14278.
Xu, X. Y.; Gao, J. P.; Huang, G. B.; Qiu, H. X.; Wang, Z. Y.; Wu, J. Z.; Pan, Z.; Xing, F. B. Fabrication of CoWO4@NiWO4 nanocomposites with good supercapacitve performances. Electrochim. Acta 2015, 174, 837–845.
Niu, L. Y.; Li, Z. P.; Xu, Y.; Sun, J. F.; Hong, W.; Liu, X. H.; Wang, J. Q.; Yang, S. R. Simple synthesis of amorphous NiWO4 nanostructure and its application as a novel cathode material for asymmetric supercapacitors. ACS Appl. Mater. Interfaces 2013, 5, 8044–8052.
He, W. D.; Wang, C. G.; Zhuge, F.; Deng, X. L.; Xu, X. J.; Zhai, T. Y. Flexible and high energy density asymmetrical supercapacitors based on core/shell conducting polymer nanowires/manganese dioxide nanoflakes. Nano Energy 2017, 35, 242–250.
Kuang, M.; Liu, X. Y.; Dong, F.; Zhang, Y. X. Tunable design of layered CuCo2O4 nanosheets@MnO2 nanoflakes core-shell arrays on Ni foam for high-performance supercapacitors. J. Mater. Chem. A 2015, 3, 21528–21536.
Liao, J. Y.; Higgins, D.; Lui, G.; Chabot, V.; Xiao, X. C.; Chen, Z. W. Multifunctional TiO2-C/MnO2 core-double-shell nanowire arrays as high-performance 3D electrodes for lithium ion batteries. Nano Lett. 2013, 13, 5467–5473.
Ma, L. B.; Hu, Y.; Chen, R. P.; Zhu, G. Y.; Chen, T.; Lv, H. L.; Wang, Y. R.; Liang, J.; Liu, H. X.; Yan, C. Z. et al. Self-assembled ultrathin NiCo2S4 nanoflakes grown on Ni foam as high-performance flexible electrodes for hydrogen evolution reaction in alkaline solution. Nano Energy 2016, 24, 139–147.
Bai, D. X.; Wang, F.; Lv, J. M.; Zhang, F. Z.; Xu, S. L. Triple-confined well-dispersed biactive NiCo2S4/Ni0.96S on graphene aerogel for high-efficiency lithium storage. ACS Appl. Mater. Interfaces 2016, 8, 32853–32861.
Yue, J.; Gu, X.; Jiang, X. L.; Chen, L.; Wang, N. N.; Yang, J.; Ma, X. J. Coaxial manganese dioxide@N-doped carbon nanotubes as superior anodes for lithium ion batteries. Electrochim. Acta 2015, 182, 676–681.
Guo, D.; Zhang, H. M.; Yu, X. Z.; Zhang, M.; Zhang, P.; Li Q. H.; Wang, T. H. Facile synthesis and excellent electrochemical properties of CoMoO4 nanoplate arrays as supercapacitors. J. Mater. Chem. A 2013, 1, 7247–7254.
Jin, G. Z.; Xiao, X. X.; Li, S.; Zhao, K. M.; Wu, Y. Z.; Sun, D.; Wang, F. Strongly coupled graphene/Mn3O4 composite with enhanced electrochemical performance for supercapacitor electrode. Electrochim. Acta 2015, 178, 689–698.
Zhao, Y.; Hu, L. F.; Zhao, S. Y.; Wu, L. M. Preparation of MnCo2O4@Ni(OH)2 core-shell flowers for asymmetric supercapacitor materials with ultrahigh specific capacitance. Adv. Funct. Mater. 2016, 26, 4085–4093.
Zhang, Y. B.; Wang, B.; Liu, F.; Cheng, J. P.; Zhang, X. W.; Zhang, L. Full synergistic contribution of electrodeposited three-dimensional NiCo2O4@MnO2 nanosheet networks electrode for asymmetric supercapacitors. Nano Energy 2016, 27, 627–637.
Wen, Y. X.; Peng, S. L.; Wang, Z. L.; Hao, J. X.; Qin, T. F.; Lu, S. Q.; Zhang, J. C.; He, D. Y.; Fan, X. Y.; Cao, G. Z. Facile synthesis of ultrathin NiCo2S4 nano-petals inspired by blooming buds for high-performance supercapacitors. J. Mater. Chem. A 2017, 5, 7144–7152.
Zhang, X. D.; Cui, S. Z.; Wang, N. N.; Hou, H. W.; Chen, W. H.; Mi, L. W. Synergistic Effect Initiating Ni1-xCoxMoO4· xH2O as electrodes for high-energy-density asymmetric supercapacitors. Electrochim. Acta 2017, 228, 274–281.