AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Confinedly implanted NiFe2O4-rGO: Cluster tailoring and highly tunable electromagnetic properties for selective-frequency microwave absorption

Yanlan ZhangXixi WangMaosheng Cao( )
School of Material Science and EngineeringBeijing Institute of TechnologyBeijing100081China
Show Author Information

Graphical Abstract

Abstract

Lightweight and high-efficiency microwave absorption materials with tunable electromagnetic properties is a highly sought-after goal and a great challenge for researchers. In this work, a simple strategy of confinedly implanting small NiFe2O4 clusters on reduced graphene oxide is demonstrated, wherein the magnetic clusters are tailored, and more significantly, the electromagnetic properties are highly tuned. The microwave absorption was efficiently optimized yielding a maximum reflection loss of –58 dB and ~12 times broadening of the bandwidth (at –10 dB). Furthermore, tailoring of the implanted magnetic clusters successfully realized the selective-frequency microwave absorption, and the absorption peak could shift from 4.6 to 16 GHz covering 72% of the measured frequency range. The fascinating performances eventuate from the appropriately tailored clusters, which provide optimal synergistic effects of the dielectric and magnetic loss caused by multi-relaxation, conductance, and resonances. These findings open new avenues for designing microwave absorption materials in future, and the well-tailored NiFe2O4-rGO can be readily applied as a multi-functional microwave absorption material in various fields ranging from civil and commerce to military and aerospace.

Electronic Supplementary Material

Download File(s)
12274_2017_1758_MOESM1_ESM.pdf (3.2 MB)

References

1

Li, Y. A.; Zhao, Y.; Lu, X. Y.; Zhu, Y.; Jiang, L. Selfhealing superhydrophobic polyvinylidene fluoride/Fe3O4@ polypyrrole fiber with core–sheath structures for superior microwave absorption. Nano Res. 2016, 9, 2034–2045.

2

Biswas, S.; Arief, I.; Panja, S. S.; Bose, S. Absorptiondominated electromagnetic wave suppressor derived from ferrite-doped cross-linked graphene framework and conducting carbon. ACS Appl. Mater. Interfaces 2017, 9, 3030–3039.

3

Chen, Y.; Zhang, H. B.; Huang, Y. Q.; Jiang, Y.; Zheng, W. G.; Yu, Z. Z. Magnetic and electrically conductive epoxy/ graphene/carbonyl iron nanocomposites for efficient electromagnetic interference shielding. Compos. Sci. Technol. 2015, 118, 178–185.

4

Toneguzzo, P.; Viau, G.; Acher, O.; Fié vet-Vincent, F.; Fié vet, F. Monodisperse ferromagnetic particles for microwave applications. Adv. Mater. 1998, 10, 1032-1035.

5

Song, C. Q.; Yin, X. W.; Han, M. K.; Li, X. L.; Hou, Z. X.; Zhang, L. T.; Cheng, L. F. Three-dimensional reduced graphene oxide foam modified with ZnO nanowires for enhanced microwave absorption properties. Carbon 2017, 116, 50–58.

6

Ding, Y.; Zhang, L.; Liao, Q. L.; Zhang, G. J.; Liu, S.; Zhang, Y. Electromagnetic wave absorption in reduced graphene oxide functionalized with Fe3O4/Fe nanorings. Nano Res. 2016, 9, 2018–2025.

7

Nanni, F.; Travaglia, P.; Valentini, M. Effect of carbon nanofibres dispersion on the microwave absorbing properties of CNF/epoxy composites. Compos. Sci. Technol. 2009, 69, 485–490.

8

Ding, X.; Huang, Y.; Li, S. P.; Wang, J. G. Preparation and electromagnetic wave absorption properties of FeNi3 nanoalloys generated on graphene-polyaniline nanosheets. RSC Adv. 2016, 6, 31440–31447.

9

Wu, F.; Xia, Y. L.; Wang, Y.; Wang, M. Y. Two-step reduction of self-assembed three-dimensional (3D) reduced graphene oxide (RGO)/zinc oxide (ZnO) nanocomposites for electromagnetic absorption. J. Mater. Chem. A 2014, 2, 20307–20315.

10

Liu, Z. W.; Che, R. C.; Wei, Y.; Liu, Y. P.; Elzatahry, A. A.; Dahyan, D. A.; Zhao, D. Y. Broadening microwave absorption via a multi-domain structure. APL Mater. 2017, 5, 046104.

11

Ding, Y.; Liao, Q. L.; Liu, S.; Guo, H. J.; Sun, Y. H.; Zhang, G. J.; Zhang, Y. Reduced graphene oxide functionalized with cobalt ferrite nanocomposites for enhanced efficient and lightweight electromagnetic wave absorption. Sci. Rep. 2016, 6, 32381.

12

Dang, Z. M.; Yuan, J. K.; Yao, S. H.; Liao, R. J. Flexible nanodielectric materials with high permittivity for power energy storage. Adv. Mater. 2013, 25, 6334–6365.

13

Liu, P. J.; Yao, Z. J.; Zhou, J. T.; Yang, Z. H.; Kong, L. B. Small magnetic co-doped NiZn ferrite/graphene nanocomposites and their dual-region microwave absorption performance. J. Mater. Chem. C 2016, 4, 9738–9749.

14

Dang, Z. M.; Wang, L.; Yin, Y.; Zhang, Q.; Lei, Q. Q. Giant dielectric permittivities in functionalized carbon-nanotube/ electroactive-polymer nanocomposites. Adv. Mater. 2007, 19, 852–857.

15

Wang, Y.; Lee, W. C.; Manga, K. K.; Ang, P. K.; Lu, J.; Liu, Y. P.; Lim, C. T.; Loh, K. P. Fluorinated graphene for promoting neuro-induction of stem cells. Adv. Mater. 2012, 24, 4285–4290.

16

Singh, A. P.; Garg, P.; Alam, F.; Singh, K.; Mathur, R. B.; Tandon, R. P.; Chandra, A.; Dhawan, S. K. Phenolic resinbased composite sheets filled with mixtures of reduced graphene oxide, Fe2O3 and carbon fibers for excellent electromagnetic interference shielding in the X-band. Carbon 2012, 50, 3868–3875.

17

Wang, Y.; Jaiswal, M.; Lin, M.; Saha, S.; Ozyilmaz, B.; Loh, K. P. Electronic properties of nanodiamond decorated graphene. ACS Nano 2012, 6, 1018–1025.

18

Wen, B.; Cao, M. S.; Lu, M. M.; Cao, W. Q.; Shi, H. L.; Liu, J.; Wang, X. X.; Jin, H. B.; Fang, X. Y.; Wang, W. Z. et al. Reduced graphene oxides: Light-weight and highefficiency electromagnetic interference shielding at elevated temperatures. Adv. Mater. 2014, 26, 3484–3489.

19

Ding, Y.; Zhang, Z.; Luo, B. H.; Liao, Q. L.; Liu, S.; Liu, Y. C.; Zhang, Y. Investigation on the broadband electromagnetic wave absorption properties and mechanism of Co3O4- nanosheets/reduced-graphene-oxide composite. Nano Res. 2017, 10, 980–990.

20

Feng, J.; Pu, F. Z.; Li, Z. X.; Li, X. H.; Hu, X. Y.; Bai, J. T. Interfacial interactions and synergistic effect of CoNi nanocrystals and nitrogen-doped graphene in a composite microwave absorber. Carbon 2016, 104, 214–225.

21

Kong, L.; Yin, X. W.; Yuan, X. Y.; Zhang, Y. J.; Liu, X. M.; Cheng, L. F.; Zhang, L. T. Electromagnetic wave absorption properties of graphene modified with carbon nanotube/ poly(dimethyl siloxane) composites. Carbon 2014, 73, 185–193.

22

Liang, J. J.; Wang, Y.; Huang, Y.; Ma, Y. F.; Liu, Z. F.; Cai, J. M.; Zhang, C. D.; Gao, H. J.; Chen, Y. S. Electromagnetic interference shielding of graphene/epoxy composites. Carbon 2009, 47, 922–925.

23

Yousefi, N.; Sun, X. Y.; Lin, X. Y.; Shen, X.; Jia, J. J.; Zhang, B.; Tang, B. Z.; Chan, M. S.; Kim, J. K. Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding. Adv. Mater. 2014, 26, 5480-5487.

24

Liu, P. B.; Huang, Y.; Zhang, X. Superparamagnetic NiFe2O4 particles on poly(3, 4-ethylenedioxythiophene)-graphene: Synthesis, characterization and their excellent microwave absorption properties. Compos. Sci. Technol. 2014, 95, 107–113.

25

Liu, P. B.; Huang, Y.; Zhang, X. Cubic NiFe2O4 particles on graphene-polyaniline and their enhanced microwave absorption properties. Compos. Sci. Technol. 2015, 107, 54–60.

26

Qu, B.; Zhu, C. L.; Li, C. Y.; Zhang, X. T.; Chen, Y. J. Coupling hollow Fe3O4-Fe nanoparticles with graphene sheets for high-performance electromagnetic wave absorbing material. ACS Appl. Mater. Interfaces 2016, 8, 3730–3735.

27

Li, X. H.; Feng, J.; Du, Y. P.; Bai, J. T.; Fan, H. M.; Zhang, H. L.; Peng, Y.; Li, F. S. One-pot synthesis of CoFe2O4/ graphene oxide hybrids and their conversion into FeCo/ graphene hybrids for lightweight and highly efficient microwave absorber. J. Mater. Chem. A 2015, 3, 5535–5546.

28

Wang, Z. J.; Wu, L. N.; Zhou, J. G.; Jiang, Z. H.; Shen, B. Z. Chemoselectivity-induced multiple interfaces in MWCNT/ Fe3O4@ZnO heterotrimers for whole x-band microwave absorption. Nanoscale 2014, 6, 12298–12302.

29

Yang, Z. H.; Li, Z. W.; Yang, Y. H.; Xu, Z. J. Optimization of ZnxFe3–xO4 hollow spheres for enhanced microwave attenuation. ACS Appl. Mater. Interfaces 2014, 6, 21911–21915.

30

Li, Z. X.; Li, X. H.; Zong, Y.; Tan, G. G.; Sun, Y.; Lan, Y. Y.; He, M.; Ren, Z. Y.; Zheng, X. L. Solvothermal synthesis of nitrogen-doped graphene decorated by superparamagnetic Fe3O4 nanoparticles and their applications as enhanced synergistic microwave absorbers. Carbon 2017, 115, 493–502.

31

Liu, P. B.; Huang, Y.; Sun, X. NiFe2O4 clusters on the surface of reduced graphene oxide and their excellent microwave absorption properties. Mater. Lett. 2013, 112, 117–120.

32

Arief, I.; Biswas, S.; Bose, S. FeCo-anchored reduced graphene oxide framework-based soft composites containing carbon nanotubes as highly efficient microwave absorbers with excellent heat dissipation ability. ACS Appl. Mater. Interfaces 2017, 9, 19202–19214.

33

Duan, Y. P.; Liu, Z.; Jing, H.; Zhang, Y. H.; Li, S. Q. Novel microwave dielectric response of Ni/Co-doped manganese dioxides and their microwave absorbing properties. J. Mater. Chem. 2012, 22, 18291–18299.

34

Ohlan, A.; Singh, K.; Chandra, A.; Dhawan, S. K. Microwave absorption behavior of core-shell structured poly(3, 4- ethylenedioxy thiophene)-barium ferrite nanocomposites. ACS Appl. Mater. Interfaces 2010, 2, 927-933.

35

Yang, Z. H.; Lv, H. L.; Wu, R. B. Rational construction of graphene oxide with MOF-derived porous NiFe@C nanocubes for high-performance microwave attenuation. Nano Res. 2016, 9, 3671–3682.

36

Che, R. C.; Peng, L. M.; Duan, X. F.; Chen, Q.; Liang, X. L. Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv. Mater. 2004, 16, 401–405.

37

Wang, G. Z.; Gao, Z.; Tang, S. W.; Chen, C. Q.; Duan, F. F.; Zhao, S. C.; Lin, S. W.; Feng, Y. H.; Zhou, L.; Qin, Y. Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition. ACS Nano 2012, 6, 11009–11017.

38

Han, M. K.; Yin, X. W.; Kong, L.; Li, M.; Duan, W. Y.; Zhang, L. T.; Cheng, L. F. Graphene-wrapped ZnO hollow spheres with enhanced electromagnetic wave absorption properties. J. Mater. Chem. A 2014, 2, 16403–16409.

39

Singh, K.; Ohlan, A.; Pham, V. H.; Balasubramaniyan, R.; Varshney, S.; Jang, J.; Hur, S. H.; Choi, W. M.; Kumar, M.; Dhawan, S. K. et al. Nanostructured graphene/Fe3O4 incorporated polyaniline as a high performance shield against electromagnetic pollution. Nanoscale 2013, 5, 2411-2420.

40

Chen, T. T.; Deng, F.; Zhu, J.; Chen, C. F.; Sun, G. B.; Ma, S. L.; Yang, X. J. Hexagonal and cubic Ni nanocrystals grown on graphene: Phase-controlled synthesis, characterization and their enhanced microwave absorption properties. J. Mater. Chem. 2012, 22, 15190–15197.

41

Lu, M. M.; Cao, M. S.; Chen, Y. H.; Cao, W. Q.; Liu, J.; Shi, H. L.; Zhang, D. Q.; Wang, W. Z.; Yuan, J. Multiscale assembly of grape-like ferroferric oxide and carbon nanotubes: A smart absorber prototype varying temperature to tune intensities. ACS Appl. Mater. Interfaces 2015, 7, 19408–19415.

42

Xu, J. J.; Liu, J. W.; Che, R. C.; Liang, C. Y.; Cao, M. S.; Li, Y.; Liu, Z. W. Polarization enhancement of microwave absorption by increasing aspect ratio of ellipsoidal nanorattles with Fe3O4 cores and hierarchical CuSiO3 shells. Nanoscale 2014, 6, 5782–5790.

43

Sun, H.; Che, R. C.; You, X.; Jiang, Y. S.; Yang, Z. B.; Deng, J.; Qiu, L. B.; Peng, H. S. Cross-stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensities. Adv. Mater. 2014, 26, 8120–8125.

44

Pan, Y. F.; Wang, G. S.; Liu, L.; Guo, L.; Yu, S. -H. Binary synergistic enhancement of dielectric and microwave absorption properties: A composite of arm symmetrical PBS dendrites and polyvinylidene fluoride. Nano Res. 2017, 10, 284–294.

45

Gupta, T. K.; Singh, B. P.; Mathur, R. B.; Dhakate, S. R. Multi-walled carbon nanotube-graphene-polyaniline multiphase nano-composite with superior electromagnetic shielding effectiveness. Nanoscale 2014, 6, 842-851.

46

Liu, Q. H.; Cao, Q.; Zhao, X. B.; Bi, H.; Wang, C.; Wu, D. S.; Che, R. C. Insights into size-dominant magnetic microwave absorption properties of CoNi microflowers via off-axis electron holography. ACS Appl. Mater. Interfaces 2015, 7, 4233–4240.

47

Wang, G. Z.; Gao, Z.; Wan, G. P.; Lin, S. W.; Yang, P.; Qin, Y. High densities of magnetic nanoparticles supported on graphene fabricated by atomic layer deposition and their use as efficient synergistic microwave absorbers. Nano Res. 2014, 7, 704–716.

48

Yan, L. L.; Liu, J.; Zhao, S. C.; Zhang, B.; Gao, Z.; Ge, H. B.; Chen, Y.; Cao, M. S.; Qin, Y. Coaxial multi-interface hollow Ni-Al2O3-ZnO nanowires tailored by atomic layer deposition for selective-frequency absorptions. Nano Res. 2017, 10, 1595–1607.

49

Lv, H. L.; Zhang, H. Q.; Zhao, J.; Ji, G. B.; Du, Y. W. Achieving excellent bandwidth absorption by a mirror growth process of magnetic porous polyhedron structures. Nano Res. 2016, 9, 1813–1822.

50

Zhang, X. F.; Rao, Y.; Guo, J. J.; Qin, G. W. Multiple-phase carbon-coated FeSn2/Sn nanocomposites for high-frequency microwave absorption. Carbon 2016, 96, 972–979.

51

Wang, L.; Xing, H. L.; Gao, S. T.; Ji, X. L.; Shen, Z. Y. Porous flower-like NiO@graphene composites with superior microwave absorption properties. J. Mater. Chem. C 2017, 5, 2005–2014.

52

Lv, H. L.; Ji, G. B.; Liang, X. H.; Zhang, H. Q.; Du, Y. W. A novel rod-like MnO2@Fe loading on graphene giving excellent electromagnetic absorption properties. J. Mater. Chem. C 2015, 3, 5056–5064.

53

Song, W. L.; Cao, M. S.; Hou, Z. L.; Fang, X. Y.; Shi, X. L.; Yuan, J. High dielectric loss and its monotonic dependence of conducting-dominated multiwalled carbon nanotubes/silica nanocomposite on temperature ranging from 373 to 873 K in X-band. Appl. Phys. Lett. 2009, 94, 233110.

54

Cao, M. S.; Song, W. L.; Hou, Z. L.; Wen, B.; Yuan, J. The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon 2010, 48, 788–796.

55

Wen, B.; Cao, M. S.; Hou, Z. L.; Song, W. L.; Zhang, L.; Lu, M. M.; Jin, H. B.; Fang, X. Y.; Wang, W. Z.; Yuan, J. Temperature dependent microwave attenuation behavior for CNT/silica composites. Carbon 2013, 65, 124–139.

56

Cao, M. S.; Yang, J.; Song, W. L.; Zhang, D. Q.; Wen, B.; Jin, H. B.; Hou, Z. L.; Yuan, J. Ferroferric oxide/multiwalled carbon nanotube vs. polyaniline/ferroferric oxide/multiwalled carbon nanotube multiheterostructures for highly effective microwave absorption. ACS Appl. Mater. Interfaces 2012, 4, 6949-6956.

Nano Research
Pages 1426-1436
Cite this article:
Zhang Y, Wang X, Cao M. Confinedly implanted NiFe2O4-rGO: Cluster tailoring and highly tunable electromagnetic properties for selective-frequency microwave absorption. Nano Research, 2018, 11(3): 1426-1436. https://doi.org/10.1007/s12274-017-1758-1
Part of a topical collection:

1514

Views

454

Crossref

N/A

Web of Science

462

Scopus

2

CSCD

Altmetrics

Received: 26 May 2017
Revised: 30 June 2017
Accepted: 04 July 2017
Published: 02 February 2018
© Tsinghua University Press and Springer-Verlag GmbH Germany 2017
Return