Graphical Abstract

Perovskite nanocrystals (NCs), which have emerged as a new class of phosphors with superb luminescence properties and bandgaps that can be easily tuned using chemical methods, have generated tremendous interest for a wide variety of applications where colloidal quantum dots have been very successful as carrier sources. In this study, self-assembled films of CsPbBr3 NCs were produced via drop casting of colloidal NCs onto glassy carbon electrodes (GCEs) to form an NC film-modified electrode. The possible fabrication process of the CsPbBr3 NCs films was discussed. We further studied the anodic electrochemiluminescence (ECL) behavior of the perovskite CsPbBr3 NCs film using cyclic voltammetry with tripropylamine (TPA) as a coreactant, and a possible ECL mechanism was proposed. Briefly, TPA was oxidized to produce strongly reducing radical species, which can react with electrochemically oxidized CsPbBr3 NCs to generate excited CsPbBr3 NCs* capable of light emission. The relative stability of the ECL emission of the CsPbBr3 NC films under aqueous conditions was also investigated, and it was found that they showed operational stability over the first three hours, indicating suitable reliability for application as sensing materials. The results suggested that semiconducting perovskite NCs have great potential for application in the ECL field.
Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Efficient hybrid solar cells based on mesosuperstructured organometal halide perovskites. Science 2012, 338, 643–647.
Akkerman, Q. A.; D'Innocenzo, V.; Accornero, S.; Scarpellini, A.; Petrozza, A.; Prato, M.; Manna, L. Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions. J. Am. Chem. Soc. 2015, 137, 10276–10281.
Swarnkar, A.; Chulliyil, R.; Ravi, V. K.; Irfanullah, M.; Chowdhury, A.; Nag, A. Colloidal CsPbBr3 perovskite nanocrystals: Luminescence beyond traditional quantum dots. Angew. Chem., Int. Ed. 2015, 127, 15644–15648.
Misra, R. K.; Aharon, S.; Li, B. L.; Mogilyansky, D.; Visoly-Fisher, I.; Etgar, L.; Katz, E. A. Temperature- and component-dependent degradation of perovskite photovoltaic materials under concentrated sunlight. J. Phys. Chem. Lett. 2015, 6, 326–330.
Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I. Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett. 2013, 13, 1764–1769.
Palazon, F.; Akkerman, Q. A.; Prato, M.; Manna, L. X-ray lithography on perovskite nanocrystals films: From patterning with anion-exchange reactions to enhanced stability in air and water. ACS Nano 2016, 10, 1224–1230.
Bertoni, C.; Gallardo, D.; Dunn, S.; Gaponik, N.; Eychmüller, A. Fabrication and characterization of red-emitting electroluminescent devices based on thiol-stabilized semiconductor nanocrystals. Appl. Phys. Lett. 2007, 90, 034107.
Konstantatos, G.; Howard, I.; Fischer, A.; Hoogland, S.; Clifford, J.; Klem, E.; Levina, L.; Sargent, E. H. Ultrasensitive solution-cast quantum dot photodetectors. Nature 2006, 442, 180–183.
Gur, I.; Fromer, N. A.; Geier, M. L.; Alivisatos, A. P. Air-stable all-inorganic nanocrystal solar cells processed from solution. Science 2005, 310, 462–465.
Huang, Y.; Fang, M. X.; Zou, G. Z.; Zhang, B.; Wang, H. S. Monochromatic and electrochemically switchable electrochemiluminescence of perovskite CsPbBr3 nanocrystals. Nanoscale 2016, 8, 18734–18739.
Schmidt, L. C.; Pertegás, A.; González-Carrero, S.; Malinkiewicz, O.; Agouram, S.; Mínguez Espallargas, G.; Bolink, H. J.; Galian, R. E.; Pérez-Prieto, J. Nontemplate synthesis of CH3NH3PbBr3 perovskite nanoparticles. J. Am. Chem. Soc. 2014, 136, 850–853.
Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692–3696.
Sukla, N.; Liu, C.; Jones, P. M.; Weller, D. FTIR study of surfactant bonding to FePt nanoparticles. J. Magn. Magn. Mater. 2003, 266, 178–184.
Suslick, K. S.; Fang, M. M.; Hyeon, T. Sonochemical synthesis of iron colloids. J. Am. Chem. Soc. 1996, 118, 11960–11961.
Zhang, L. H.; Dong, S. J. Electrogenerated chemiluminescence sensors using Ru(bpy)32+ doped in silica nanoparticles. Anal. Chem. 2006, 78, 5119–5123.
Sun, X.; Du, Y.; Dong, S.; Wang, E. Method for effective immobilization of Ru(bpy)32+ on an electrode surface for solid-state electrochemiluminescene detection. Anal. Chem. 2005, 77, 8166–8169.
Ding, Z. F, ; Quinn, B. M.; Haram, S. K.; Pell, L. E.; Korgel, B. A.; Bard, A. J. Electrochemistry and electrogenerated chemiluminescence from silicon nanocrystal quantum dots. Science 2002, 296, 1293–1297.
Sun, L. F.; Bao, L.; Hyun, B. -R.; Bartnik, A. C.; Zhong, Y. -W.; Reed, J. C.; Pang, D. -W.; Abru?a, H. D.; Malliaras, G. G.; Wise, F. W. Electrogenerated chemiluminescence from PbS quantum dots. Nano Lett. 2009, 9, 789–793.
Zhang, L. H.; Zou, X. Q.; Ying, E. B.; Dong, S. J. Quantum dot electrochemiluminescence in aqueous solution at lower potential and its sensing application. J. Phys. Chem. C 2008, 112, 4451–4454.
Knight, A. W.; Greenway, G. M. Relationship between structural attributes and observed electrogenerated chemiluminescence (ECL) activity of tertiary amines as potential analytes for the tris(2, 2-bipyridine)ruthenium(Ⅱ) ECL reaction. A review. Analyst 1996, 121, 101R–106R.
Liu, X. Q.; Shi, L. H.; Niu, W. X.; Li, H. J.; Xu, G. B. Environmentally friendly and highly sensitive ruthenium(Ⅱ) tris(2, 2′-bipyridyl) electrochemiluminescent system using 2-(dibutylamino)ethanol as co-reactant. Angew. Chem., Int. Ed. 2007, 119, 425–428.
Tang, J.; Kemp, K. W.; Hoogland, S.; Jeong, K. S.; Liu, H.; Levina, L.; Furukawa, M.; Wang, X. H.; Debnath, R.; Cha, D. et al. Colloidal-quantum-dot photovoltaics using atomicligand passivation. Nat. Mater. 2011, 10, 765–771.
Li, J. H.; Xu, L. M.; Wang, T.; Song, J. Z.; Chen, J. W.; Xue, J.; Dong, Y. H.; Cai, B.; Shan, Q. S.; Han, B. N. et al. 50-Fold EQE improvement up to 6.27% of solution-processed all-inorganic perovskite CsPbBr3 QLEDs via surface ligand density control. Adv. Mater. 2017, 29, 1603885.