Graphical Abstract

This paper presents a wafer-level and highly controllable fabrication technology for silicon nanowire field-effect transistor (SiNW-FET arrays) on (111) silicon-on-insulator (SOI) wafers. Herein, 3, 000 SiNW FET array devices were designed and fabricated on 4-inch wafers with a rate of fine variety of more than 90% and a dimension deviation of the SiNWs of less than ± 20 nm in each array. As such, wafer-level and highly controllable fabricated SiNW FET arrays were realized. These arrays showed excellent electrical properties and highly sensitive determination of pH values and nitrogen dioxide. The high-performance of the SiNW FET array devices in liquid and gaseous environments can enable the detection under a wide range of conditions. This fabrication technology can lay the foundation for the large-scale application of SiNWs.
Henning, A.; Swaminathan, N.; Godkin, A.; Shalev, G.; Amit, I.; Rosenwaks, Y. Tunable diameter electrostatically formed nanowire for high sensitivity gas sensing. Nano Res. 2015, 8, 2206–2215.
Hu, J. T.; Ouyang, M.; Yang, P. D.; Lieber, C. M. Controlled growth and electrical properties of heterojunctions of carbon nanotubes and silicon nanowires. Nature 1999, 399, 48–51.
Nozaki, D.; Kunstmann, J.; Zörgiebel, F.; Pregl, S.; Baraban, L.; Weber, W. M.; Mikolajick, T.; Cuniberti, G. Ionic effects on the transport characteristics of nanowire-based FETs in a liquid environment. Nano Res. 2014, 7, 380–389.
Yang, C.; Zhong, Z. H.; Lieber, C. M. Encoding electronic properties by synthesis of axial modulation-doped silicon nanowires. Science 2005, 310, 1304–1307.
Patolsky, F.; Zheng, G. F.; Lieber, C. M. Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species. Nat. Protoc. 2006, 1, 1711–1724.
Singh, A. K.; Ko, D. H.; Vishwakarma, N. K.; Jang, S.; Min, K. I.; Kim, D. P. Micro-total envelope system with silicon nanowire separator for safe carcinogenic chemistry. Nat. Commun. 2016, 7, 10741.
Duan, X. X.; Li, Y.; Rajan, N. K.; Routenberg, D. A.; Modis, Y.; Reed, M. A. Quantification of the affinities and kinetics of protein interactions using silicon nanowire biosensors. Nat. Nanotechnol. 2012, 7, 401–407.
Luthcke, S. B.; Arendt, A. A.; Rowlands, D. D.; McCarthy, J. J.; Larsen, C. F. Recent glacier mass changes in the gulf of Alaska region from GRACE mascon solutions. J. Glaciol. 2008, 54, 767–777.
Hu, S.; Leu, P. W.; Marshall, A. F.; McIntyre, P. C. Single- crystal germanium layers grown on silicon by nanowire seeding. Nat. Nanotechnol. 2009, 4, 649–653.
Cui, Y.; Wei, Q. Q.; Park, H.; Lieber, C. M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 2001, 293, 1289–1292.
Dávila, D.; Tarancón, A.; Fernández-Rregúlez, M.; Calaza, C.; Salleras, M.; San Paulo, A.; Fonseca, L.; Silicon nanowire arrays as thermoelectric material for a power microgenerator. J. Micromech. Microeng. 2011, 21, 104007.
Peng, K. Q.; Xu, Y.; Wu, Y.; Yan, Y. J.; Lee, S. T.; Zhu, J. Aligned single-crystalline Si nanowire arrays for photovoltaic applications. Small 2005, 1, 1062–1067.
Ma, D. D. D.; Lee, C. S.; Au, F. C. K.; Tong, S. Y.; Lee, S. T. Small-diameter silicon nanowire surfaces. Science 2003, 299, 1874–1877.
Dhara, S.; Mele, E. J.; Agarwal, R. Voltage-tunable circular photogalvanic effect in silicon nanowires. Science 2015, 349, 726–729.
Chung, S. W.; Yu, J. Y.; Heath, J. R. Silicon nanowire devices. Appl. Phys. Lett. 2000, 76, 2068–2070.
Wang, J.; Polizzi, E.; Lundstrom, M. A three-dimensional quantum simulation of silicon nanowire transistors with the effective-mass approximation. J. Appl. Phys. 2004, 96, 2192–2203.
Park, I.; Li, Z. Y.; Pisano, A. P.; Williams, R. S. Top-down fabricated silicon nanowire sensors for real-time chemical detection. Nanotechnology 2010, 21 (1): 015501.
Ruffo, R.; Hong, S. S.; Chan, C. K.; Huggins, R. A.; Cui, Y. Impedance analysis of silicon nanowire lithium ion battery anodes. J. Phys. Chem. C. 2009, 113, 11390–11398.
Ahn, Y.; Dunning, J.; Park, J. Scanning photocurrent imaging and electronic band studies in silicon nanowire field effect transistors. Nano Lett. 2005, 5, 1367–1370.
Huang, R. G.; Tham, D.; Wang, D. W.; Heath, J. R. High performance ring oscillators from 10-nm wide silicon nanowire field-effect transistors. Nano Res. 2011, 4, 1005–1012.
Liu, N.; Yao, Y.; Cha, J. J.; McDowell, M. T.; Han, Y.; Cui, Y. Functionalization of silicon nanowire surfaces with metal- organic frameworks. Nano Res. 2012, 5, 109–116.
Bae, J. M.; Lee, W. J.; Ma, J. W.; Cho, M. H.; Ahn, J. P.; Lee, H. S. The oxidation characteristics of silicon nanowires grown with an Au catalyst. Nano Res. 2012, 5, 152–163.
Park, N. M.; Choi, C. J. Growth of silicon nanowires in aqueous solution under atmospheric pressure. Nano Res. 2014, 7, 898–902.
Zhang, L. M.; Liu, C.; Wong, A. B.; Resasco, J.; Yang, P. D. MoS2-wrapped silicon nanowires for photoelectrochemical water reduction. Nano Res. 2015, 8, 281–287.
Yang, K. K.; Cantarero, A.; Rubio, A.; Agosta, R. D. Optimal thermoelectric figure of merit of Si/Ge core–shell nanowires. Nano Res. 2015, 8, 2611–2619.
Zhong, X.; Wang, G. M.; Papandrea, B.; Li, M. F.; Xu, Y. X.; Chen, Y.; Chen, C. Y.; Zhou, H. L.; Xue, T.; Li, Y. J. et al. Reduced graphene oxide/silicon nanowire heterostructures with enhanced photoactivity and superior photoelectrochemical stability. Nano Res. 2015, 8, 2850–2858.
Liu, Q.; Wu, F. L.; Cao, F. R.; Chen, L.; Xie, X. J.; Wang, W. C.; Tian, W.; Li, L. A multijunction of ZnIn2S4 nanosheet/ TiO2 film/Si nanowire for significant performance enhancement of water splitting. Nano Res. 2015, 8, 3524–3534.
Kim, Y.; Jeon, Y.; Kim, M.; Kim, S. NOR logic function of a bendable combination of tunneling field-effect transistors with silicon nanowire channels. Nano Res. 2016, 9, 499–506.
Gao, A. R.; Lu, N.; Wang, Y. C.; Dai, P. F.; Li, T.; Gao, X. L.; Wang, Y. L.; Fan, C. H. Enhanced sensing of nucleic acids with silicon nanowire field effect transistor biosensors. Nano Lett. 2012, 12, 5262–5268.
Wang, C.; Ye, M.; Cheng, L.; Li, R.; Zhu, W. W.; Shi, Z.; Fan, C. H.; He, J. K.; Liu, J.; Liu, Z. Simultaneous isolation and detection of circulating tumor cells with a microfluidic silicon-nanowire-array integrated with magnetic upconversion nanoprobes. Biomaterials 2015, 54, 55–62.
Wang, D. W.; Sheriff, B. A.; McAlpine, M.; Heath, J. R. Development of ultra-high density silicon nanowire arrays for electronics applications. Nano Res. 2008, 1, 9–21.
Fan, R.; Wu, Y. Y.; Li, D. Y.; Yue, M.; Majumdar, A.; Yang, P. D. Fabrication of silica nanotube arrays from vertical silicon nanowire templates. J. Am. Chem. Soc. 2003, 125, 5254–5255.
Huang, Z.; Fang, H.; Zhu, J. Fabrication of silicon nanowire arrays with controlled diameter, length, and density. Adv. Mater. 2007, 19, 744–748.
Engel, Y.; Elnathan, R.; Pevzner, A.; Davidi, G.; Flaxer, E.; Patolsky, F. Supersensitive detection of explosives by silicon nanowire arrays. Angew. Chem. , Int. Ed. 2010, 49, 6830–6835.
Peng, K. Q.; Zhang, M. L.; Lu, A. J.; Wong, N. B.; Zhang, R. Q.; Lee, S. T. Ordered silicon nanowire arrays via nanosphere lithography and metal-induced etching. Appl. Phys. Lett. 2007, 90, 163123.
Zhang, X. Y.; Zhang, L. D.; Meng, G. W.; Li, G. H.; Jin- Phillipp, N. Y.; Phillipp, F. Synthesis of ordered single crystal silicon nanowire arrays. Adv. Mater. 2001, 13, 1238–1241.
Whang, D.; Jin, S.; Wu, Y.; Lieber, C. M. Large-scale hierarchical organization of nanowire arrays for integrated nanosystems. Nano Lett. 2003, 3, 1255–1259.
Chen, X. J.; Zhang, J.; Wang, Z. L.; Yan, Q.; Hui, S. C. Humidity sensing behavior of silicon nanowires with hexamethyldisilazane modification. Sensor Actuat. B: Chem. 2011, 156, 631–636.
In, H. J.; Field, C. R.; Pehrsson, P. E. Periodically porous top electrodes on vertical nanowire arrays for highly sensitive gas detection. Nanotechnology 2011, 22, 355501.
Tian, B. Z.; Zheng, X. L.; Kempa, T. J.; Fang, Y.; Yu, N. F.; Yu, G. H.; Huang, J. L.; Lieber, B. Z. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 2007, 449, 885–889.
Tsakalakos, L.; Balch, J.; Fronheiser, J.; Korevaar, B. A.; Sulima, O.; Rand, J. Silicon nanowire solar cells. Appl. Phys. Lett. 2007, 91, 233117.
Peng, K. Q.; Wang, X.; Lee, S. T. Silicon nanowire array photoelectrochemical solar cells. Appl. Phys. Lett. 2008, 92, 163103.
Thiyagu, S.; Devi, B. P.; Pei, Z. Fabrication of large area high density, ultra-low reflection silicon nanowire arrays for efficient solar cell applications. Nano Res. 2011, 4, 1136–1143.
Garnett, E. C.; Yang, P. D. Silicon nanowire radial p-n junction solar cells. J. Am. Chem. Soc. 2008, 130, 9224–9225.
Shen, X. J.; Sun, B. Q.; Liu, D.; Lee, S. T. Hybrid heterojunction solar cell based on organicinorganic silicon nanowire array architecture. J. Am. Chem. Soc. 2011, 133, 19408–19415.
Fang, H.; Li, X. D.; Song, S.; Xu, Y.; Zhu, J. Fabrication of slantingly-aligned silicon nanowire arrays for solar cell applications. Nanotechnology 2008, 19, 255703.
Peng, K. Q.; Wang, X.; Wu, X. L.; Lee, S. T. Platinum nanoparticle decorated silicon nanowires for efficient solar energy conversion. Nano Lett. 2009, 9, 3704–3709.
Garnett, E.; Yang, P. D. Light trapping in silicon nanowire solar cells. Nano Lett. 2010, 10, 1082–1087.
Li, Z.; Chen, Y.; Li, X.; Kamins, T. I.; Nauka, K.; Williams, R. S. Sequence-specific label-free DNA sensors based on silicon nanowires. Nano Lett. 2004, 4, 245–247.
Park, I.; Li, Z. Y.; Pisano, A. P.; Williams, R. S. Selective surface functionalization of silicon nanowires via nanoscale joule heating. Nano Lett. 2007, 7, 3106–3111.
Lee, K. N.; Jung, S. W.; Shin, K. S.; Kim, W. H.; Lee, M. H.; Seong, W. K. Fabrication of suspended silicon nanowire arrays. Small 2008, 4, 642–648.
Yu, X.; Wang, Y. C.; Zhou, H.; Liu, Y. X.; Wang, Y.; Li, T.; Wang, Y. L. Top-down fabricated silicon-nanowire-based field-effect transistor device on a (111) silicon wafer. Small 2013, 9, 525–530.