Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
A unique feature of transition metal dichalcogenides is their single-layer form, which enables folding. Although folding has been found to significantly affect the photoluminescence spectrum and some in-plane properties, only limited insight has been gained on how to modulate those properties. In this report, we examine the structure of folds of a single sheet of MoS2 and the dependence of the ground-state electronic and phonon transport properties on the wrapping length. As the folded structure is effectively a bilayer that terminates in a loop, the wrapping length modulates the relative size of the bilayer region to the closed loop along the edge. A combination of computational methods, including approaches based on variational mechanics, classical potentials, and density functional theory, are employed. Highly accurate calculations of the reference folded structure are first carried out to show that the folded structure is largely insensitive to the wrapping length. The folded structures are subsequently used to estimate the electronic band gap, which is found to vary significantly as a function of the wrapping length, and converges from below to the limit value corresponding to an infinite bilayer. The gap values range from 0.43 to 1.09 eV, with a crossover to an indirect gap, which suggests that the transitions must be lattice-assisted, similar to the transitions in the bilayer and bulk forms. However, the phonons, while affected by the formation of the folded structure, are insensitive to the wrapping length. In fact, the overall thermal transport behavior along the folding axis is unchanged. The possibility of modulating the gap value while keeping the thermal properties unchanged opens up new exciting avenues for further applications of this emerging material.
Kadantsev, E. S.; Hawrylak, P. Electronic structure of a single MoS2 monolayer. Solid State Commun. 2012, 152, 909–913.
Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, I. V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150.
Jin, Z. L.; Liao, Q. W.; Fang, H. S.; Liu, Z. C.; Liu, W.; Ding, Z. D.; Luo, T. F.; Yang, N. A revisit to high thermoelectric performance of single-layer MoS2. Sci. Rep. 2014, 5, 18342.
Crowne, F. J.; Amani, M.; Birdwell, A. G.; Chin, M. L.; O'Regan, T. P.; Najmaei, S.; Liu, Z.; Ajayan, P. M.; Lou, J.; Dubey, M. Blueshift of the A-exciton peak in folded monolayer 1H-MoS2. Phys. Rev. B 2013, 88, 235302.
Castellanos-Gomez, A.; van der Zant, H. S.; Steele, G. A. Folded MoS2 layers with reduced interlayer coupling. Nano Res. 2014, 7, 572–578.
Jiang, T.; Liu, H. R.; Huang, D.; Zhang, S.; Li, Y. G.; Gong, X. G.; Shen, Y. R.; Liu, W. T.; Wu, S. W. Valley and band structure engineering of folded MoS2 bilayers. Nat Nanotechnol. 2014, 9, 825–829.
Huang, S. X.; Ling, X.; Liang, L. B.; Kong, J.; Terrones, H.; Meunier, V.; Dresselhaus, M. S. Probing the interlayer coupling of twisted bilayer MoS2 using photoluminescence spectroscopy. Nano Lett. 2014, 14, 5500–5508.
Conley, H. J.; Wang, B.; Ziegler, J. I.; Haglund Jr, R. F.; Pantelides, S. T.; Bolotin, K. I. Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett. 2013, 13, 3626–3630.
Johari, P.; Shenoy, V. B. Tuning the electronic properties of semiconducting transition metal dichalcogenides by applying mechanical strains. ACS Nano. 2012, 6, 5449–5456.
Koskinen, P.; Fampiou, I.; Ramasubramaniam, A. Density- functional tight-binding simulations of curvature-controlled layer decoupling and band-gap tuning in bilayer MoS2. Phys. Rev. Lett. 2014, 112, 186802.
Yan, R. S.; Simpson, J. R.; Bertolazzi, S.; Brivio, J.; Watson, M.; Wu, X. F.; Kis, A.; Luo, T. F.; Walker, A. R. H.; Xing, H. G. Thermal conductivity of monolayer molybdenum disulfide obtained from temperature-dependent Raman spectroscopy. ACS Nano. 2014, 8, 986–993.
Peng, B.; Zhang, H.; Shao, H. Z.; Xu, Y. C.; Zhang, X. C.; Zhu, H. Y. Thermal conductivity of monolayer MoS2, MoSe2, and WS2: Interplay of mass effect, interatomic bonding and anharmonicity. RSC Adv. 2016, 6, 5767–5773.
Su, J.; Liu, Z. T.; Feng, L. P.; Li, N. Effect of temperature on thermal properties of monolayer MoS2 sheet. J. Alloy. Compd. 2015, 622, 777–782.
Cai, Y. Q.; Lan, J. H.; Zhang, G.; Zhang, Y. W. Lattice vibrational modes and phonon thermal conductivity of monolayer MoS2. Phys. Rev. B 2014, 89, 035438.
Wei, X. L.; Wang, Y. C.; Shen, Y. L.; Xie, G. F.; Xiao, H. P.; Zhong, J. X.; Zhang, G. Phonon thermal conductivity of monolayer MoS2: A comparison with single layer graphene. Appl. Phys. Lett. 2014, 105, 103902.
Wang, C. X.; Zhang, C.; Jiang, J. W.; Rabczuk, T. A coarse- grained simulation for the folding of molybdenum disulphide. J. Phys. D: Appl. Phys. 2016, 49, 025302.
Ding, Z. W.; Pei, Q. X.; Jiang, J. W.; Zhang, Y. W. Manipulating the thermal conductivity of monolayer MoS2 via lattice defect and strain engineering. J. Phys. Chem. C 2015, 119, 16358–16365.
Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.
Lebègue, S.; Eriksson, O. Electronic structure of two- dimensional crystals from ab initio theory. Phys. Rev. B 2009, 79, 115409.
Splendiani, A.; Sun, L.; Zhang, Y. B.; Li, T. S.; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271–1275.
Gu, X. K.; Li, B. W.; Yang, R. G. Layer thickness-dependent phonon properties and thermal conductivity of MoS2. J. Appl. Phys. 2016, 119, 085106.
Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1–19.
Gale, J. D. GULP: A computer program for the symmetry- adapted simulation of solids. J. Chem. Soc. Faraday Trans. 1997, 93, 629–637.
Jiang, J. W.; Park, H. S.; Rabczuk, T. Molecular dynamics simulations of single-layer molybdenum disulphide (MoS2): Stillinger-weber parametrization, mechanical properties, and thermal conductivity. J. Appl. Phys. 2013, 114, 064307.
Liang, T.; Phillpot, S. R.; Sinnott, S. B. Parametrization of a reactive many-body potential for Mo–S systems. Phys. Rev. B 2009, 79, 245110.
Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I. et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. : Condens. Matter 2009, 21, 395502.
Grimme, S. Semiempirical GGA‐type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799.
Cox, B. J.; Baowan, D.; Bacsa, W.; Hill, J. M. Relating elasticity and graphene folding conformation. RSC Adv. 2015, 5, 57515–57520.
Jiang, J. W.; Qi, Z. N.; Park, H. S.; Rabczuk, T. Elastic bending modulus of single-layer molybdenum disulfide (MoS2): Finite thickness effect. Nanotechnology 2013, 24, 435705.
Xiong, S.; Cao, G. X. Bending response of single layer MoS2. Nanotechnology 2016, 27, 105701.
Böker, T.; Severin, R.; Müller, A.; Janowitz, C.; Manzke, R.; Voß, D.; Krüger, P.; Mazur, A.; Pollmann, J. Band structure of MoS2, MoSe2, and α-MoTe2: Angle-resolved photoelectron spectroscopy and ab initio calculations. Phys. Rev. B 2001, 64, 235305.
Shi, H. L.; Pan, H.; Zhang, Y. W.; Yakobson, B. I. Quasiparticle band structures and optical properties of strained monolayer MoS2 and WS2. Phys. Rev. B 2013, 87, 155304.
Ahmad, S.; Mukherjee, S. A comparative study of electronic properties of bulk MoS2 and its monolayer using DFT technique: Application of mechanical strain on MoS2 monolayer. Graphene 2014, 3, 50633.
Liu, Q. H.; Li, L. Z.; Li, Y.; Gao, Z.; Chen, Z.; Lu, J. Tuning electronic structure of bilayer MoS2 by vertical electric field: A first-principles investigation. J. Phys. Chem. C 2012, 116, 21556–21562.
Kuc, A.; Zibouche, N.; Heine, T. Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2. Phys. Rev. B 2011, 83, 245213.
Sahoo, S.; Gaur, A. P. S.; Ahmadi, M.; Guinel, M. J. F.; Katiyar, R. S. Temperature-dependent Raman studies and thermal conductivity of few-layer MoS2. J. Phys. Chem. C 2013, 117, 9042–9047.
McLaren, R. C. Thermal conductivity anisotropy in molybdenum disulfide thin films. Ph. D. Dissertation, University of Illinois at Urbana, Champaign, USA, 2009.
Kim, J. Y.; Choi, S. M.; Seo, W. S.; Cho, W. S. Thermal and electronic properties of exfoliated metal chalcogenides. Bull. Korean Chem. Soc. 2010, 31, 3225–3227.
Liu, J.; Choi, G. M.; Cahill, D. G. Measurement of the anisotropic thermal conductivity of molybdenum disulfide by the time-resolved magneto-optic kerr effect. J. Appl. Phys. 2014, 116, 233107.
Muratore, C.; Varshney, V.; Gengler, J. J.; Hu, J. J.; Bultman, J. E.; Roy, A. K.; Farmer, B. L.; Voevodin, A. A. Thermal anisotropy in nano-crystalline MoS2 thin films. Phys. Chem. Chem. Phys. 2014, 16, 1008–1014.
Zhang, X.; Sun, D. Z.; Li, Y. L.; Lee, G. H.; Cui, X.; Chenet, D.; You, Y. M.; Heinz, T. F.; Hone, J. C. Measurement of lateral and interfacial thermal conductivity of single-and bilayer MoS2 and MoSe2 using refined optothermal Raman technique. ACS Appl. Mater. Interfaces 2015, 7, 25923– 25929.
Gandi, A. N.; Schwingenschlögl, U. Thermal conductivity of bulk and monolayer MoS2. EPL (Europhys. Lett. ) 2016, 113, 36002.
Li, W.; Carrete, J.; Mingo, N. Thermal conductivity and phonon linewidths of monolayer MoS2 from first principles. Appl. Phys. Lett. 2013, 103, 253103.
Liu, X. J.; Zhang, G.; Pei, Q. X.; Zhang, Y. W. Phonon thermal conductivity of monolayer MoS2 sheet and nanoribbons. Appl. Phys. Lett. 2013, 103, 133113.