AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Synthesis of nano SnO2-coupled mesoporous molecular sieve titanium phosphate as a recyclable photocatalyst for efficient decomposition of 2, 4-dichlorophenol

Yanduo LiuNing SunShuangying ChenRui YanPeng LiYang QuYichun Qu( )Liqiang Jing( )
Key Laboratory of Functional Inorganic Materials Chemistry (Heilongjiang University)Ministry of EducationSchool of Chemistry and Materials ScienceInternational Joint Research Center for Catalytic TechnologyHeilongjiang UniversityHarbin150080China
Show Author Information

Graphical Abstract

Abstract

It is essential to develop a cheap, recyclable, and efficient photocatalyst to help degrade pollutants contaminating the environment. Herein, mesoporous molecular sieve titanium phosphate (MMS-TiP) was used as an efficient nano-photocatalyst to degrade 2, 4-dichlorophenol (2, 4-DCP) and to oxidize CO. The catalyst was successfully synthesized by a simple and convenient hydrothermal method in the presence of a tri-block copolymer surfactant. Exceptional photoactivity of the optimized MMS-TiP mainly depends on its porous structure, with a large surface area by means of O2 temperature-programmed desorption curves and fluorescence spectra related to the amounts of produced hydroxyl radical. Interestingly, the photocatalytic activity of the prepared MMS-TiP could be greatly improved by coupling with nanocrystalline SnO2. This is likely due to the increase in the lifetime and separation of photogenerated charges by transferring electrons to SnO2 and was observed by steady-state surface photovoltage spectra and time-resolved surface photovoltage responses. The SnO2-coupled MMS-TiP exhibits better photocatalytic performance for 2, 4-DCP degradation and better self-settlement than those of the commercial catalyst P25 TiO2. Moreover, it was confirmed by radical-trapping experiments that ·O2–is the main activated species for the photocatalytic degradation of 2, 4-DCP, and is photogenerated by electron transfer from MMS-TiP to SnO2. Furthermore, the main intermediates in the degradation of 2, 4-DCP, like parachlorophenol superoxide and 1, 2-benzenediol superoxide radicals, were detected, and a possible decomposition pathway related to ·O2–attack is proposed. These experimental results provide new strategies for developing a recyclable molecular sievebased nano-photocatalyst with high photocatalytic activity for environmental remediation.

Electronic Supplementary Material

Download File(s)
12274_2017_1776_MOESM1_ESM.pdf (4.2 MB)

References

1

Liu, Y. D.; Tang, A. W.; Zhang, Q.; Yin, Y. D. Seed- mediated growth of anatase TiO2 nanocrystals with core- antenna structures for enhanced photocatalytic activity. J. Am. Chem. Soc. 2015, 137, 11327–11339.

2

Zhang, S. J.; Liu, X. T.; Wang, M. S.; Wu, B. D.; Pan, B. C.; Yang, H.; Yu, H. Q. Diketone-mediated photochemical processes for target-selective degradation of dye pollutants. Environ. Sci. Technol. Lett. 2014, 1, 167–171.

3

Sajan, C. P.; Wageh, S.; Al-Ghamdi, A. A.; Yu, J. G.; Cao, S. W. TiO2 nanosheets with exposed {001} facets for photocatalytic applications. Nano Res. 2016, 9, 3–27.

4

Zhao, Z.; Zhang, X. Y.; Zhang, G. Q.; Liu, Z. Y.; Qu, D.; Miao, X.; Feng, P. Y.; Sun, Z. C. Effect of defects on photocatalytic activity of rutile TiO2 nanorods. Nano Res. 2015, 8, 4061–4071.

5

Humayun, M.; Qu, Y.; Raziq, F.; Yan, R.; Li, Z. J.; Zhang, X. L.; Jing, L. Q. Exceptional visible-light activities of TiO2-coupled N-doped porous perovskite LaFeO3 for 2, 4-dichlorophenol decomposition and CO2 conversion. Environ. Sci. Technol. 2016, 50, 13600–13610.

6

Li, H. Y.; Wang, D. J.; Fan, H. M.; Jiang, T. F.; Li, X. L.; Xie, T. F. Synthesis of ordered multivalent Mn–TiO2 nanospheres with tunable size: A high performance visible-light photocatalyst. Nano Res. 2011, 4, 460–469.

7

Casillas, J. E.; Tzompantzi, F.; Castellanos, S. G.; Mendoza- Damián, G.; Pérez-Hernández, R.; López-Gaona, A.; Barrera, A. Promotion effect of ZnO on the photocatalytic activity of coupled Al2O3-Nd2O3-ZnO composites prepared by the sol-gel method in the degradation of phenol. Appl. Catal. B Environ. 2017, 208, 161–170.

8

Xu, J.; Liu, X.; Lowry, G. V.; Cao, Z.; Zhao, H.; Zhou, J. L.; Xu, X. H. Dechlorination mechanism of 2, 4-dichlorophenol by magnetic MWCNTs supported Pd/Fe nanohybrids: Rapid adsorption, gradual dechlorination, and desorption of phenol. ACS Appl. Mater. Interfaces 2016, 8, 7333–7342.

9

Rodriguez, J. A.; Grinter, D. C.; Liu, Z. Y.; Palomino, R. M.; Senanayake, S. D. Ceria-based model catalysts: Fundamental studies on the importance of the metal–ceria interface in CO oxidation, the water–gas shift, CO2 hydrogenation, and methane and alcohol reforming. Chem. Soc. Rev. 2017, 46, 1824–1841.

10

Li, Z. J.; Huang, Z. W.; Guo, W. L.; Wang, L.; Zheng, L. R.; Chai, Z. F.; Shi, W, Q. Enhanced photocatalytic removal of uranium(VI) from aqueous solution by magnetic TiO2/Fe3O4 and its graphene composite. Environ. Sci. Technol. 2017, 51, 5666–5674.

11

Taira, K.; Nakao, K.; Suzuki, K.; Einaga, H. SOx tolerant Pt/TiO2 catalysts for CO oxidation and the effect of TiO2 supports on catalytic activity. Environ. Sci. Technol. 2016, 50, 9773–9780.

12

Zhang, D. P.; Wang, W.; Peng, F. P.; Kou, J. H.; Ni, Y. R.; Lu, C. H.; Xu, Z. Z. A bio-inspired inner-motile photocatalyst film: A magnetically actuated artificial cilia photocatalyst. Nanoscale 2014, 6, 5516–5525.

13

Sun, N.; Qu, Y.; Chen, S. Y.; Yan, R.; Humayun, M.; Liu, Y. D.; Bai, L. L.; Jing, L. Q.; Fu, H. G. Efficient photodecomposition of 2, 4-dichlorophenol on recyclable phase-mixed hierarchically structured Bi2O3 coupled with phosphate-bridged nano-SnO2. Environ. Sci. Nano 2017, 4, 1147–1154.

14

Zhang, W. Z.; Koivula, R.; Wiikinkoski, E.; Xu, J. H.; Hietala, S.; Lehto, J.; Harjula, R. efficient and selective recovery of trace scandium by inorganic titanium phosphate ion-exchangers from leachates of waste bauxite residue. ACS Sustainable Chem. Eng. 2017, 5, 3103–3114.

15

Huang, H. L.; Huang, Y. T.; Wang, S. L. A crystalline mesolamellar gallium phosphate with zwitterionic-type templates exhibiting green afterglow property. Inorg. Chem. 2016, 55, 6836–6838.

16

Annaniah, L.; Devarajan, M. Investigation on electro-optical performance of aluminium indium gallium phosphate light emitting diode with cracked substrate. Mater. Sci. Semicond. Process. 2015, 36, 84–91.

17

Bhanja, P.; Senthil, C.; Patra, A. K.; Sasidharan, M.; Bhaumik, A. NASICON type ordered mesoporous lithium-aluminum- titanium-phosphate as electrode materials for lithium-ion batteries. Micropor. Mesopor. Mater. 2017, 240, 57–64.

18

Cheng, F. F.; He, T. T.; Miao, H. T.; Shi, J. J.; Jiang, L. P.; Zhu, J. J. Electron transfer mediated electrochemical biosensor for MicroRNAs detection based on metal ion functionalized titanium phosphate nanospheres at attomole level. ACS Appl. Mater. Interfaces 2015, 7, 2979–2985.

19

Yada, M.; Inoue, Y.; Sakamoto, A.; Torikai, T.; Watari, T. Synthesis and controllable wettability of micro-and nanostructured titanium phosphate thin films formed on titanium plates. ACS Appl. Mater. Interfaces 2014, 6, 7695–7704.

20

Wang, C.; Yang, M.; Li, M. R.; Xu, S. T.; Yang, Y.; Tian, P.; Liu, Z. M. A reconstruction strategy to synthesize mesoporous SAPO molecular sieve single crystals with high MTO catalytic activity. Chem. Commun. 2016, 52, 6463–6466.

21

McNamara, N. D.; Hicks, J. C. Chelating agent-free, vapor- assisted crystallization method to synthesize hierarchical microporous/mesoporous MIL-125 (Ti). ACS Appl. Mater. Interfaces 2015, 7, 5338–5346.

22

Zhou, L.; Zhang, H. Y.; Sun, H. Q.; Liu, S. M.; Tade, M. O.; Wang, S. B.; Jin, W. Q. Recent advances in non-metal modification of graphitic carbon nitride for photocatalysis: A historic review. Catal. Sci. Technol. 2016, 6, 7002–7023.

23

Jing, L. Q.; Zhou, W.; Tian, G. H.; Fu, H. G. Surface tuning for oxide-based nanomaterials as efficient photocatalysts. Chem. Soc. Rev. 2013, 42, 9509–9549.

24

Dahl, M.; Liu, Y. D.; Yin, Y. D. Composite titanium dioxide nanomaterials. Chem. Rev. 2014, 114, 9853–9889.

25

Asahi, R.; Morikawa, T.; Irie, H.; Ohwaki, T. Nitrogen-doped titanium dioxide as visible-light-sensitive photocatalyst: Designs, developments, and prospects. Chem. Rev. 2014, 114, 9824–9852.

26

Raziq, F.; Qu, Y.; Humayun, M.; Zada, A.; Yu, H. T.; Jing, L. Q. Synthesis of SnO2/B-P codoped g-C3N4 nanocomposites as efficient cocatalyst-free visible-light photocatalysts for CO2 conversion and pollutant degradation. Appl. Catal. B Environ. 2017, 201, 486–494.

27

Kargar, A.; Kim, S. J.; Allameh, P.; Choi, C.; Park, N.; Jeong, H.; Pak, Y.; Jung, G. Y.; Pan, X. Q.; Wang, D. L. et al. p-Si/SnO2/Fe2O3 core/shell/shell nanowire photocathodes for neutral pH water splitting. Adv. Funct. Mater. 2015, 25, 2609–2615.

28

Li, J. M.; Cheng, H. Y.; Chiu, Y. H.; Hsu, Y. J. ZnO–Au–SnO2 z-scheme photoanodes for remarkable photoelectrochemical water splitting. Nanoscale 2016, 8, 15720–15729.

29

Xie, R. Z.; Meng, X. Y.; Sun, P. Z.; Niu, J. F.; Jiang, W. J.; Bottomley, L.; Li, D.; Chen, Y. S.; Crittenden, J. Electrochemical oxidation of ofloxacin using a TiO2-based SnO2- Sb/polytetrafluoroethylene resin-PbO2 electrode: Reaction kinetics and mass transfer impact. Appl. Catal. B Environ. 2017, 203, 515–525.

30

Ao, Y. H.; Bao, J. Q.; Wang, P. F.; Wang, C.; Hou, J. Bismuth oxychloride modified titanium phosphate nanoplates: A new p–n type heterostructured photocatalyst with high activity for the degradation of different kinds of organic pollutants. J. Colloid Interface Sci. 2016, 476, 71–78.

31

Ao, Y. H.; Bao, J. Q.; Wang, P. F.; Wang, C. A novel heterostructured plasmonic photocatalyst with high photocatalytic activity: Ag@AgCl nanoparticles modified titanium phosphate nanoplates. J. Alloys Compd. 2017, 698, 410–419.

32

Kamari, Y.; Ghiaci, P.; Ghiaci, M. Study on montmorillonite/ insulin/TiO2 hybrid nanocomposite as a new oral drug-delivery system. Mater. Sci. Eng. C 2017, 75, 822–828.

33

Safajou, H.; Khojasteh, H.; Salavati-Niasari, M.; Mortazavi- Derazkola, S. Enhanced photocatalytic degradation of dyes over graphene/Pd/TiO2 nanocomposites: TiO2 nanowires versus TiO2 nanoparticles. J. Colloid Interface Sci. 2017, 498, 423–432.

34

del Valle, L. J.; Bertran, O.; Chaves, G.; Revilla-López, G.; Rivas, M.; Casas, M. T.; Casanovas, J.; Turon, P.; Puiggalí, J.; Alemán, C. DNA adsorbed on hydroxyapatite surfaces. J. Mater. Chem. B. 2014, 2, 6953–6966.

35

Ren, L.; Li, Y. Z.; Hou, J. T.; Zhao, X. J.; Pan, C. X. Preparation and enhanced photocatalytic activity of TiO2 nanocrystals with internal pores. ACS Appl. Mater. Interfaces 2014, 6, 1608–1615.

36

Chang, X. H.; Wang, T.; Liu, Z. L.; Zheng, X. Y.; Zheng, J.; Li, X. G. Ultrafine Sn nanocrystals in a hierarchically porous N-doped carbon for lithium ion batteries. Nano Res. 2017, 10, 1950–1958.

37

Ye, J. W.; Zhu, X. F.; Cheng, B.; Yu, J. G.; Jiang, C. J. Few-layered graphene-like boron nitride: A highly efficient adsorbent for indoor formaldehyde removal. Environ. Sci. Technol. Lett. 2017, 4, 20–25.

38

Yang, D. J.; Liu, H. W.; Zheng, Z. F.; Yuan, Y.; Zhao, J. C.; Waclawik, E. R.; Ke, X. B.; Zhu, H. Y. An efficient photocatalyst structure: TiO2(B) nanofibers with a shell of anatase nanocrystals. J. Am. Chem. Soc. 2009, 131, 17885– 17893.

39

Pan, D.; Wan, N.; Ren, Y.; Zhang, W. F.; Lu, X.; Wang, Y. S.; Hu, Y. S.; Bai, Y. Enhanced structural and electrochemical stability of self-similar rice-shaped SnO2 nanoparticles. ACS Appl. Mater. Interfaces 2017, 9, 9747–9755.

40

Liu, Y. F.; Zhu, Y. Y.; Xu, J.; Bai, X. J.; Zong, R. L.; Zhu, Y. F.; Degradation and mineralization mechanism of phenol by BiPO4 photocatalysis assisted with H2O2. Appl. Catal. B Environ. 2013, 142–143, 561–567.

41

Xiao, H.; Liu, R. P.; Zhao, X.; Qu, J. H. Enhanced degradation of 2, 4-dinitrotoluene by ozonation in the presence of manganese(Ⅱ) and oxalic acid. J. Mol. Catal. A Chem. 2008, 286, 149–155.

42

Chen, S. Y.; Yan, R.; Zhang, X. L.; Hu, K.; Li, Z. J.; Humayun, M.; Qu, Y.; Jing, L. Q. Photogenerated electron modulation to dominantly induce efficient 2, 4-dichlorophenol degradation on BiOBr nanoplates with different phosphate modification. Appl. Catal. B Environ. 2017, 209, 320–328.

Nano Research
Pages 1612-1624
Cite this article:
Liu Y, Sun N, Chen S, et al. Synthesis of nano SnO2-coupled mesoporous molecular sieve titanium phosphate as a recyclable photocatalyst for efficient decomposition of 2, 4-dichlorophenol. Nano Research, 2018, 11(3): 1612-1624. https://doi.org/10.1007/s12274-017-1776-z

749

Views

38

Crossref

N/A

Web of Science

39

Scopus

0

CSCD

Altmetrics

Received: 29 May 2017
Revised: 17 July 2017
Accepted: 24 July 2017
Published: 02 February 2018
© Tsinghua University Press and Springer‐Verlag GmbH Germany 2017
Return