Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Cell-assembled (Gd-DOTA)i-triphenylphosphonium (TPP) nanoclusters as a T2 contrast agent reveal in vivo fates of stem cell transplants

Yanhui Zhang1,2,§Hongyan Zhang1,3,§Binbin Li1,4Hailu Zhang1Bo Tan1()Zongwu Deng1()
CAS Key Laboratory of Nano-Bio Interface and Division of Nanobionics ResearchSuzhou Institute of Nano-tech and Nano-bionicsChinese Academy of SciencesSuzhou215123China
College of SciencesShanghai UniversityShanghai200444China
Institute of Environmental and Chemical EngineeringShanghai UniversityShanghai200444China
Institute of Nanoscience and NanotechnologyUniversity of Science and Technology of ChinaSuzhou215123China

§ Yanhui Zhang and Hongyan Zhang contributed equally to this work.

Show Author Information

Graphical Abstract

View original image Download original image

Abstract

A simple and straightforward strategy for magnetic resonance imaging (MRI) of stem cell transplants in terms of their viability, migration and homing, and differentiation has been pursued over the years. Herein we couple Gd-DOTA with triphenylphosphonium (TPP) to yield small molecule (Gd-DOTA)i-TPP (i = 1, 4) agents and show that labeling cells with (Gd-DOTA)i-TPP via electroporation (EP) results in two distinct cellular distributions of (Gd-DOTA)i-TPP: freely and evenly distributed in the cytosol or cell-assembled nanoclusters in the cytoplasm. The two distinct cellular distributions contribute in different ways to MRI signals in vitro and in vivo. Importantly, we present a detailed interpretation of MRI results based on the signal intensity equation and cellular longitudinal (T1-) and transverse (T2-) relaxation rates of water protons. We demonstrate that cell-assembled (Gd-DOTA)i-TPP nanoclusters not only promote its intracellular retention time but also induce significant MRI signal reduction, which act as an excellent T2 contrast agent and allows for unambiguous reporting of in vivo viability and migration of cell transplants under T2-weighted MRI over a long period. Notably, (Gd-DOTA)i-TPP agents released as a result of exocytosis or cell death induce signal enhancement in the surrounding tissue such that the labeled cells can be unambiguously discriminated from its host tissue. The labeling and imaging strategy provides abundant information on the in vivo fates of stem cell transplants. The strategy features a single contrast, single imaging mode with dual signal output.

Electronic Supplementary Material

Download File(s)
12274_2017_1778_MOESM1_ESM.pdf (1.2 MB)

References

1

Weightman, A. P.; Jenkins, S. I.; Chari, D. M. Using a 3-D multicellular simulation of spinal cord injury with live cell imaging to study the neural immune barrier to nanoparticle uptake. Nano Res. 2016, 9, 2384–2397.

2

Yu, M.; Lei, B.; Gao, C. B.; Yan, J.; Ma, P. X. Optimizing surface-engineered ultra-small gold nanoparticles for highly efficient miRNA delivery to enhance osteogenic differentiation of bone mesenchymal stromal cells. Nano Res. 2017, 10, 49–63.

3

Deng, J.; Zheng, H. H.; Zheng, X. W.; Yao, M. Y.; Li, Z.; Gao, C. Y. Gold nanoparticles with surface-anchored chiral poly(acryloyl-L(D)-valine) induce differential response on mesenchymal stem cell osteogenesis. Nano Res. 2016, 9, 3683–3694.

4

Gera, A.; Steinberg, G. K.; Guzman, R. In vivo neural stem cell imaging: current modalities and future directions. Regen. Med. 2010, 5, 73–86.

5

Bulte, J. W. M. In vivo MRI cell tracking: Clinical studies. Am. J. Roentgenol. 2009, 193, 314–325.

6

Kraitchman, D. L.; Bulte, J. W. M. Imaging of stem cells using MRI. Basic Res. Cardiol. 2008, 103, 105–113.

7

Politi, L. S. MR-based imaging of neural stem cells. Neuroradiology 2007, 49, 523–534.

8

Rogers, W. J.; Meyer, C. H.; Kramer, C. M. Technology insight: in vivo cell tracking by use of MRI. Nat. Clin. Prac. Cardiov. Med. 2006, 3, 554–562.

9

Mahmoudi, M.; Hosseinkhani, H.; Hosseinkhani, M.; Boutry, S.; Simchi, A.; Shane Journeay, W.; Subramani, K.; Laurent, S. Magnetic resonance imaging tracking of stem cells in vivo using iron oxide nanoparticles as a tool for the advancement of clinical regenerative medicine. Chem. Rev. 2011, 111, 253–280.

10

Bulte, J. W. M.; Zhang, S. C.; van Gelderen, P.; Herynek, V.; Jordan, E. K.; Duncan, I. D.; Frank, J. A. Neurotransplantation of magnetically labeled oligodendrocyte progenitors: magnetic resonance tracking of cell migration and myelination. Proc. Natl. Acad. Sci. USA 1999, 96, 15256–15261.

11

Hoehn, M.; Küstermann, E.; Blunk, J.; Wiedermann, D.; Trapp, T.; Wecker, S.; Föcking, M.; Arnold, H.; Hescheler, J.; Fleischmann, B. K. et al. Monitoring of implanted stem cell migration in vivo: A highly resolved in vivo magnetic resonance imaging investigation of experimental stroke in rat. Proc. Natl. Acad. Sci. USA 2002, 99, 16267–16272.

12

Guzman, R.; Bliss, T.; De Los Angeles, A.; Moseley, M.; Palmer, T.; Steinberg, G. Neural progenitor cells transplanted into the uninjured brain undergo targeted migration after stroke onset. J. Neurosci. Res. 2008, 86, 873–882.

13

Hinds, K. A.; Hill, J. M.; Shapiro, E. M.; Laukkanen, M. O.; Silva, A. C.; Combs, C. A.; Varney, T. R.; Balaban, R. S.; Koretsky, A. P.; Dunbar, C. E. Highly efficient endosomal labeling of progenitor and stem cells with large magnetic particles allows magnetic resonance imaging of single cells. Blood 2003, 102, 867–872.

14

Shapiro, E. M.; Skrtic, S.; Sharer, K.; Hill, J. M.; Dunbar, C. E.; Koretsky, A. P. MRI detection of single particles for cellular imaging. Proc. Natl. Acad. Sci. USA 2004, 101, 10901–10906.

15

Yi, P. W.; Chen, G. C.; Zhang, H. L.; Tian, F.; Tan, B.; Dai, J. W.; Wang, Q. B.; Deng, Z. W. Magnetic resonance imaging of Fe3O4@SiO2-labeled human mesenchymal stem cells in mice at 11.7 T. Biomaterials 2013, 34, 3010–3019.

16

Terrovitis, J.; Stuber, M.; Youssef, A.; Preece, S.; Leppo, M.; Kizana, E.; Schär, M.; Gerstenblith, G.; Weiss, R. G.; Marbán, E. et al. Magnetic resonance imaging overestimates ferumoxide-labeled stem cell survival after transplantation in the heart. Circulation 2008, 117, 1555–1562.

17

Wang, Y. X. J.; Wang, H. H.; Au, D. W. T.; Zou, B. S.; Teng, L. S. Pitfalls in employing superparamagnetic iron oxide particles for stem cell labeling and in vivo MRI tracking. Brit. J. Radiol. 2008, 81, 987–988.

18

Khurana, A.; Nejadnik, H.; Gawande, R.; Lin, G. T.; Lee, S. M.; Messing, S.; Castaneda, R.; Derugin, N.; Pisani, L.; Lue, T. F. et al. Intravenous ferumoxytol allows noninvasive MR imaging monitoring of macrophage migration into stem cell transplants. Radiology 2012, 264, 803–811.

19

Wang, Q. W.; Chen, B.; Ma, F.; Lin S. K.; Cao M.; Li Y.; Gu, N. Magnetic iron oxide nanoparticles accelerate osteogenic differentiation of mesenchymal stem cells via modulation of long noncoding RNA INZEB2. Nano Res. 2017, 10, 626–642.

20

Guenoun, J.; Ruggiero, A.; Doeswijk, G.; Janssens, R. C.; Koning, G. A.; Kotek, G.; Krestin, G. P.; Bernsen, M. R. In vivo quantitative assessement of cell viability of gadolinium or iron-labeled cells using MRI and bioluminescence imaging. Contrast Media Mol. Imaging 2013, 8, 165–174.

21

Nejadnik, H.; Ye, D. J.; Lenkov, O. D.; Doing, J. S.; Martin, J. E; Castillo, R.; Derugin, N.; Sennino, B.; Rao, J. H.; Daldrup-Link, H. E. Magnetic resonance imaging of stem cell apoptosis in arthritic joints with a caspase activatable contrast agent. ACS Nano 2015, 9, 1150–1160.

22

Villaraza, A. J. L.; Bumb, A.; Brechbiel, M. W. Macromolecules, dendrimers, and nanomaterials in magnetic resonance imaging: The interplay between size, function, and pharmacokinetics. Chem. Rev. 2010, 110, 2921–2959.

23

Tachibana, Y.; Enmi J. I.; Agudelo, C. A.; Iida, H.; Yamaoka, T. Long-term/bioinert labeling of rat mesenchymal stem cells with PVA-Gd conjugates and MRI monitoring of the labeled cell survival after intramuscular transplantation. Bioconjugate Chem. 2014, 25, 1243–1251.

24

Agudelo, C. A.; Tachibana, Y.; Hurtado, A. F.; Ose, T.; Iida, H.; Yamaoka, T. The use of magnetic resonance cell tracking to monitor endothelial progenitor cells in a rat hindlimb ischemic model. Biomaterials 2012, 33, 2439–2448.

25

Ngen, E. J.; Wang, L.; Kato, Y.; Krishnamachary, B.; Zhu, W. L.; Gandhi, N.; Smith, B.; Armour, M.; Wong, J.; Gabrielson, K. et al. Imaging transplanted stem cells in real time using an MRI dual-contrast method. Sci. Rep. 2015, 5, 13628.

26

Endres, P. J.; MacRenaris, K. W.; Vogt, S.; Meade, T. J. Cell- permeable MR contrast agents with increased intracellular retention. Bioconjugate Chem. 2008, 19, 2049–2059.

27

Cohen, B.; Ziv, K.; Plaks, V.; Israely, T.; Kalchenko, V.; Harmelin, A.; Benjamin, L. E.; Neeman, M. MRI detection of transcriptional regulation of gene expression in transgenic mice. Nat. Med. 2007, 13, 498–503.

28

Genove, G.; DeMarco, U.; Xu, H. Y.; Goins, W. F.; Ahrens, E. T. A new transgene reporter for in vivo magnetic resonance imaging. Nat. Med. 2005, 11, 450–454.

29

Choi, J. S.; Lee, J. H.; Shin, T. H.; Song, H. T.; Kim, E. Y.; Cheon, J. Self-confirming "and" logic nanoparticles for fault-free MRI. J. Am. Chem. Soc. 2010, 132, 11015–11017.

30

Zhou, Z. J.; Huang, D. T.; Bao, J. F.; Chen, Q. L.; Liu, G.; Chen, Z.; Chen, X. Y.; Gao, J. H. A synergistically enhanced T1-T2 dual-modal contrast agent. Adv. Mater. 2012, 24, 6223–6228.

31

Ni, K. Y.; Zhao, Z. H.; Zhang, Z. J.; Zhou, Z. J.; Yang, L.; Wang, L. R.; Ai, H.; Gao, J. H. Geometrically confined ultrasmall gadolinium oxide nanoparticles boost the T1 contrast ability. Nanoscale 2016, 8, 3768–3774.

32

Murphy, M. P.; R. Smith, R. A. J. Targeting antioxidants to mitochondria by conjugation to lipophilic cations. Annu. Rev. Pharmacol. Toxicol. 2007, 47, 629–656.

33

Murphy M. P.; Smith, R. A. J. Drug delivery to mitochondria: The key to mitochondrial medicine. Adv. Drug Del. Rev. 2000, 41, 235–250.

34

Morrison, D. E.; Aitken, J. B.; de Jonge, M. D.; Issa, F.; Harris, H. H.; Rendina, L. M. Synthesis and biological evaluation of a class of mitochondrially-targeted Gadolinium(Ⅲ) agents. Chem. Eur. J. 2014, 20, 16602–16612.

35

Di Gregorio, E.; Ferrauto, G; Gianolio, E.; Aime, S. Gd loading by hypotonic swelling: an efficient and safe route for cellular labeling. Contrast Media Mol. Imaging 2013, 8, 475–486.

36

Li, C.; Winnard, P. Jr.; Bhujwalla, Z. M. Facile synthesis of 1-(acetic acid)-4, 7, 10-tris(tert-butoxycarbonylmethyl)-1, 4, 7, 10- tetraazacyclododecane: a reactive precursor chelating agent. Tetrahedron Lett. 2009, 50, 2929–2931.

37

Zhang, Q. Q.; Cao, R.; Fei, H.; Zhou, M. Mitochondria- targeting phosphorescent iridium(Ⅲ) complexes for living cell imaging. Dalton Trans. 2014, 43, 16872–16879.

38

McRobbie, D. W; Moore, E. A.; Graves, M. J.; Prince, M. R. MRI from Picture to Proton; 2nd ed. Cambridge University Press: New York, 2007.

39

Caravan, P.; Ellison, J. J.; McMurry, T. J.; Lauffer, R. B. Gadolinium(Ⅲ) chelates as MRI contrast agents: Structures, dynamics, and applications. Chem. Rev. 1999, 99, 2293–2352.

40

Barthel. A. K.; Dass, M.; Dröge, M.; Cramer, J. M.; Baumann, D; Urban, M.; Landfester, K.; Mailänder, V.; Liberwirth, I. Imaging the intracellular degradation of biodegradable polymer nanoparticles. Beilstein J. Nanotechnol. 2014, 5, 1905–1917.

41

Terreno, E.; Crich, S. G.; Belfiore, S.; Biancone, L.; Cabella, C.; Esposito, G; Manazza, A. D; Aime, S. Effect of the intracellular localization of a Gd-based imaging probe on the relaxation enhancement of water protons. Magn. Reson. Med. 2006, 55, 491–497.

42

Gianolio, E.; Arena, F; Strijkers, G. J.; Nicolay, K.; Högset, A.; Aime, S. Photochemical activation of endosomal escape of MRI-Gd-agents in tumor cells. Mag. Reson. Med. 2011, 65, 212–219.

43

Digilio. G.; Catanzaro, V.; Fedeli, F.; Gianolio, E.; Menchise, V.; Napolitano, R.; Gringeri, C.; Aime, S. Targeting exofacial protein thiols with Gd complexes. An efficient procedure for MRI cell labelling. Chem. Comm. 2009, 893–895.

44

Digilio, G.; Menchise, V.; Gianolio, E.; Catanzaro, V.; Carrera, C.; Napolitano, R.; Fedeli, F.; Aime, S. Exofacial protein thiols as a route for the internalization of Gd(Ⅲ)-based complexes for magnetic resonance imaging cell labeling. J. Med. Chem. 2010, 53, 4877–4890.

45

Cao, L. M, ; Li, B. B.; Yi, P. W.; Zhang, H. L.; Dai, J. W.; Tan, B.; Deng, Z. W. The interplay of T1- and T2-relaxiation on T1-weighted MRI of hMSCs induced by Gd-DOTA- peptides. Biomaterials 2014, 35, 4168–4174.

46

Chen, H. W.; Yeh, J. L.; Wang, L. Y.; Khurshid, H.; Peng, N.; Wang, A. Y.; Mao, H. Preparation and control of the formation of single core and clustered nanoparticles for biomedical applications using a versatile amphiphilic diblock copolymer. Nano Res. 2010, 3, 852–862.

47

Chen, H. W.; Zou, P.; Connam, J.; Paholak, H.; Sun, D. X. Intracellular dissociation of a polymer coating from nanoparticles. Nano Res. 2012, 5, 815–825.

48

Yang, Z. Z.; Ding, X. G.; Jiang, J. Facile synthesis of magnetic-plasmonicnanocomposites as T1 MRI contrast enhancing and photothermal therapeutic agents. Nano Res. 2016, 9, 787–799.

49

Caravan, P.; Farrar, C. T.; Frullano, L.; Uppal, R. Influence of molecular parameters and increasing magnetic field strength on relaxivity of gadolinium- and manganese-based T1 contrast agents. Contrast Media Mol. Imaging 2009, 4, 89–100.

50

Wang, L. R.; Lin, H. Y.; Ma, L. C.; Jin, J. B.; Shen, T. P.; Wei, R. X.; Wang, X. M.; Ai, H.; Chen, Z.; Gao, J. H. Albumin-based nanoparticles loaded with hydrophobic gadolinium chelates as T1-T2 dual-mode contrast agents for accurate liver tumor imaging. Nanoscale 2017, 9, 4516–4523.

51

Pereira, G. A.; Ananias, D.; Rocha, J.; Amaral, V. S.; Muller, R. N.; Vander Elst, L.; Tóth, É.; Peters, J. A.; Geraldes, C. F. G. C. NMR relaxivity of Ln3+-based zeolite-type materials. J. Mater. Chem. 2005, 15, 3832–3837.

52

Peters, J. A.; Djanashvili, K. Lanthanide loaded zeolites, clays, and mesoporous silica materials as MRI probes. Eur. J. Inorg. Chem. 2012, 2012, 1961–1974.

Nano Research
Pages 1625-1641
Cite this article:
Zhang Y, Zhang H, Li B, et al. Cell-assembled (Gd-DOTA)i-triphenylphosphonium (TPP) nanoclusters as a T2 contrast agent reveal in vivo fates of stem cell transplants. Nano Research, 2018, 11(3): 1625-1641. https://doi.org/10.1007/s12274-017-1778-x
Metrics & Citations  
Article History
Copyright
Return