AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A novel method for preparing and characterizing graphene nanoplatelets/aluminum nanocomposites

Duosheng Li1( )Yin Ye1Xiaojun Liao1Qing H. Qin2
School of Materials Science and EngineeringNanchang Hangkong UniversityNanchang330063China
Research School of EngineeringAustralian National UniversityActonACT2601Australia
Show Author Information

Graphical Abstract

Abstract

Graphene nanoplatelets/aluminum (GNPs/Al) nanocomposites were fabricated using a novel two-step method. High resolution transmission electron microscope (HRTEM), Raman, field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), EDS mapping, and mechanical testing system (MTS) were applied to characterize the microstructure and mechanical properties of the GNPs/Al nanocomposites. The GNPs were homogeneously dispersed in GNPs/Al nanocomposites, and presented a fine interface behavior and microstructure characteristics. A harmful phase, aluminum carbide (Al4C3), was not observed in significant quantities in the nanocomposite. Compared with pure aluminum, the mechanical properties of the GNPs/Al nanocomposites containing a low volume fraction of GNPs were sharply improved. When 0.5 vol.%, 1.0 vol.%, and 2.0 vol.% GNPs were added to the aluminum matrix, the average compressive strength of GNPs/Al nanocomposites was 297, 345, and 527 MPa, respectively, which remarkably increased the strength over the original aluminum by 330% to 586%.

References

1

Geim, A. K. Graphene: Status and prospects. Science 2009, 324, 1530-1534.

2

Jiang W. G.; Zeng Y. H.; Qin Q. H.; Luo Q. H. A novel oscillator based on heterogeneous carbon@MoS2 nanotubes. Nano Res. 2016, 9, 1775-1784.

3

Reina, A.; Thiele, S.; Jia, X. T.; Bhaviripudi, S.; Dresselhaus, M. S.; Schaefer, J. A.; Kong, J. Growth of large-area single- and bi-layer graphene by controlled carbon precipitation on polycrystalline Ni surfaces. Nano Res. 2009, 2, 509-516.

4

Hao, Y. F.; Bharathi, M. S.; Wang, L.; Liu, Y. Y.; Chen, H.; Nie, S.; Wang, X. H.; Chou, H.; Tan, C.; Fallahazad, B. et al. The role of surface oxygen in the growth of large single-crystal graphene on copper. Science 2013, 342, 720-723.

5

Lee, C. G.; Wei, X. D.; Kysar, J. W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385-388.

6

Weitz, R. T.; Yacoby, A. Nanomaterials: Graphene rests easy. Nat. Nanotechnol. 2010, 5, 699-700.

7

Sun, Z. Z.; Yan, Z.; Yao, J.; Beitler, E.; Zhu, Y.; Tour, J. M. Growth of graphene from solid carbon sources. Nature 2010, 468, 549-552.

8

Istrate, O. M.; Paton, K. R.; Khan, U.; O'Neill, A.; Bell, A. P.; Coleman, J. N. Reinforcement in melt-processed polymer- graphene composites at extremely low graphene loading level. Carbon 2014, 78, 243-249.

9

Hu, K. S.; Kulkarni, D. D.; Choi, I.; Tsukruk, V. V. Graphene- polymer nanocomposites for structural and functional applications. Prog. Poly. Sci. 2014, 39, 1934-1972.

10

Österholm, A.; Lindfors, T.; Kauppila, J.; Damlin, P.; Kvarnström C. Electrochemical incorporation of graphene oxide into conducting polymer films. Electrochim. Acta 2012, 83, 463-470.

11

Wang, J. Y.; Li, Z. Q.; Fan, G. L.; Pan, H. H.; Chen, Z. X.; Zhang, D. Reinforcement with graphene nanosheets in aluminum matrix composites. Scripta Mater. 2016, 66, 594-597

12

Shin, S. E.; Choi, H. J.; Shin, J. H.; Bae, D. H. Strengthening behavior of few-layered graphene/aluminum composites. Carbon 2015, 82, 143-151.

13

Fattahi, M.; Gholami, A. R.; Eynalvandpour, A.; Ahmadi, E.; Fattahi, Y.; Akhavan, S. Improved microstructure and mechanical properties in gas tungsten arc welded aluminum joints by using graphene nanosheets/aluminum composite filler wires. Micron 2014, 64, 20-27.

14

Kudin, K. N.; Ozbas, B.; Schniepp, H. C.; Prud'homme, R. K.; Aksay, I. A.; Car, R. Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 2008, 8, 36-41.

15

Nieto, A.; Lahiri, D.; Agarwal, A. Nanodynamic mechanical behavior of graphene nanoplatelet-reinforced tantalum carbide. Scripta Mater. 2013, 69, 678-681.

16

Li, D. S.; Wu, W. Z.; Qin, Q. H.; Zhou, X. L.; Zuo, D. Y.; Lu, S. Q; Gao, Y. B. Microstructure and mechanical properties of graphene/Al composites. Chin. J. Nonferr. Metal. 2015, 25, 1498-1504.

17

Shin, S. E.; Bae, D. H. Deformation behavior of aluminum alloy matrix composites reinforced with few-layer graphene. Compos. Part A: Appl. Sci. Manuf. 2015, 78, 42-47.

18

Bastwros, M.; Kim, G. Y.; Zhu, C.; Zhang, K.; Wang, S. R; Tang, X. D.; Wang, X. W. Effect of ball milling on graphene reinforced Al6061 composite fabricated by semi-solid sintering. Compos. Part B: Eng. 2014, 60, 111-118.

19

Rashad, M.; Pan, F. S.; Tang, A. T.; Asif, M. Effect of Graphene nanoplatelets addition on mechanical properties of pure aluminum using a semi-powder method. Prog. Nat. Sci: Mater. Int. 2014, 2, 101-108.

20

Li, J. L.; Xiong, Y. C.; Wang, X. D.; Yan, S. J.; Yang, C.; He, W. W.; Chen, J. Z.; Wang, S. Q.; Zhang, X. Y.; Dai, S. L. Microstructure and tensile properties of bulk nanostructured aluminum/graphene composites prepared via cryomilling. Mater. Sci. Eng. A 2015, 626, 400-405.

21

Pérez-Bustamante, R.; Bolaños-Morales, D.; Bonilla-Martínez, J.; Estrada-Guela, I.; Martínez-Sánchez, R. Microstructural and hardness behavior of graphene-nanoplatelets/aluminum composites synthesized by mechanical alloying. J. Alloys Compd. 2014, 615, S578-S582.

22

Deng, C. F.; Wang, D. Z.; Zhang, X. X.; Li, A. B. Processing and properties of carbon nanotubes reinforced aluminum composites. Mater. Sci. Eng. A 2007, 444, 138-145.

23

Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.

24

Tuinstra, F.; Koenig, J. L. Raman spectrum of graphite. J. Chem. Phys. 2014, 53, 1126-1130.

25

Jeon, C. H.; Jeong, Y. H.; Seo, J. J.; Tien, H. N.; Hong, S. T.; Yum, Y. J.; Hur, S. H., Lee, K. J. Material properties of graphene/aluminum metal matrix composites fabricated by friction stir processing. Int. J. Precis. Eng. Manuf. 2014, 15, 1235-1239.

Nano Research
Pages 1642-1650
Cite this article:
Li D, Ye Y, Liao X, et al. A novel method for preparing and characterizing graphene nanoplatelets/aluminum nanocomposites. Nano Research, 2018, 11(3): 1642-1650. https://doi.org/10.1007/s12274-017-1779-9

661

Views

43

Crossref

N/A

Web of Science

49

Scopus

6

CSCD

Altmetrics

Received: 04 April 2017
Revised: 25 July 2017
Accepted: 28 July 2017
Published: 02 February 2018
© Tsinghua University Press and Springer-Verlag GmbH Germany 2017
Return