AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

High-performance asymmetrical supercapacitor composed of rGO-enveloped nickel phosphite hollow spheres and N/S co-doped rGO aerogel

Deyang Zhang1Yihe Zhang1( )Yongsong Luo2Yu Zhang1Xiaowei Li1Xuelian Yu1Hao Ding1Paul K. Chu3Li Sun1( )
Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid WastesNational Laboratory of Mineral MaterialsSchool of Materials Science and TechnologyChina University of GeosciencesBeijing100083China
School of Physics and Electronic EngineeringXinyang Normal UniversityXinyang464000China
Department of Physics and Department of Materials Science and EngineeringCity University of Hong KongTat Chee AvenueKowloonHong KongChina
Show Author Information

Graphical Abstract

Abstract

An asymmetrical supercapacitor (ASC), comprising reduced graphene oxide (rGO)-encapsulated nickel phosphite hollow microspheres (NPOH-0.5@rGO) as positive electrode, and porous nitrogen/sulfur co-doped rGO aerogel (NS-3D rGO) as negative electrode has been prepared. The NPOH-0.5@rGO electrode combines the advantages of the NPOH hollow microspheres and the conductive rGO layers giving rise to a large specific capacitance, high cycling reversibility, and excellent rate performance. The NS-3D rGO electrode with abundant porosity and active sites promotes electrolyte infiltration and broadens the working voltage range. The ASC (NPOH-0.5@rGO//NS-3D rGO) shows a maximum voltage of up to 1.4 V, outstanding cycling ability (capacitance retention of 95.5% after 10, 000 cycles), and excellent rate capability (capacitance retention of 77% as the current density is increased ten times). The ASC can light up an light-emitting diodes (LED) for more than 20 min after charging for 20 s. The fabrication technique and device architecture can be extended to other active oxide and carbon-based materials for next-generation high-performance electrochemical storage devices.

Electronic Supplementary Material

Download File(s)
12274_2017_1780_MOESM1_ESM.pdf (2.9 MB)

References

1

Miller, J. R.; Simon, P. Electrochemical capacitors for energy management. Science 2008, 321, 651-652.

2

Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845-854.

3

Sun, L.; Li, M.; Jiang, Y.; Kong, W. B.; Jiang, K. L.; Wang, J. P.; Fan, S. S. Sulfur nanocrystals confined in carbon nanotube network as a binder-free electrode for high-performance lithium sulfur batteries. Nano Lett. 2014, 14, 4044-4049.

4

Sun, L.; Wang, D. T.; Luo, Y. F.; Wang, K.; Kong, W. B.; Wu, Y.; Zhang, L. N.; Jiang, K. L.; Li, Q. Q.; Zhang, Y. H. et al. Sulfur embedded in a mesoporous carbon nanotube network as a binder-free electrode for high-performance lithium-sulfur batteries. ACS Nano 2016, 10, 1300-1308.

5

Hou, X. Y.; Peng, T.; Cheng, J. B.; Yu, Q. H.; Luo, R. J.; Lu, Y.; Liu, X. M.; Kim, J. K.; He, J.; Luo, Y. S. Ultrathin ZnS nanosheet/carbon nanotube hybrid electrode for high-performance flexible all-solid-state supercapacitor. Nano Res. 2017, 10, 2570-2583.

6

Luo, Y. S.; Luo, J. S.; Jiang, J.; Zhou, W. W.; Yang, H. P.; Qi, X. Y.; Zhang, H.; Fan, H. J.; Yu, D. Y. W.; Li, C. M. et al. Seed-assisted synthesis of highly ordered TiO2@α-Fe2O3 core/shell arrays on carbon textiles for lithium-ion battery applications. Energy Environ. Sci. 2012, 5, 6559-6566.

7

Xu, Y. X.; Huang, X. Q.; Lin, Z. Y.; Zhong, X.; Huang, Y.; Duan, X. F. One-step strategy to graphene/Ni(OH)2 composite hydrogels as advanced three-dimensional supercapacitor electrode materials. Nano Res. 2013, 6, 65-76.

8

Chen, J.; Li, C.; Shi, G. Q. Graphene materials for electrochemical capacitors. J. Phys. Chem. Lett. 2013, 4, 1244-1253.

9

Bose, S.; Kuila, T.; Mishra, A. K.; Rajasekar, R.; Kim, N. H.; Lee, J. H. Carbon-based nanostructured materials and their composites as supercapacitor electrodes. J. Mater. Chem. 2012, 22, 767-784.

10

Wang, H. L.; Liang, Y. Y.; Mirfakhrai, T.; Chen, Z.; Casalongue, H. S.; Dai, H. J. Advanced asymmetrical supercapacitors based on graphene hybrid materials. Nano Res. 2011, 4, 729-736.

11

Zhang, J. T.; Jiang, J. W.; Li, H. L.; Zhao, X. S. A high-performance asymmetric supercapacitor fabricated with graphene-based electrodes. Energy Environ. Sci. 2011, 4, 4009-4015.

12

Wu, Z. S.; Wang, D. W.; Ren, W. C.; Zhao, J. P.; Zhou, G. M.; Li, F.; Cheng, H. M. Anchoring hydrous RuO2 on graphene sheets for high-performance electrochemical capacitors. Adv. Funct. Mater. 2010, 20, 3595-3602.

13

Zhang, D. Y.; Zhang, Y. H.; Luo, Y. S.; Chu, P. K. Highly porous honeycomb manganese oxide@carbon fibers core-shell nanocables for flexible supercapacitors. Nano Energy 2015, 13, 47-57.

14

Park, S.; Shim, H. W.; Lee, C. W.; Song, H. J.; Park, I. J.; Kim, J. C.; Hong, K. S.; Kim, D. W. Tailoring uniform γ-MnO2 nanosheets on highly conductive three-dimensional current collectors for high-performance supercapacitor electrodes. Nano Res. 2015, 8, 990-1004.

15

Peng, Y. T.; Chen, Z.; Wen, J.; Xiao, Q. F.; Weng, D.; He, S. Y.; Geng, H. B.; Lu, Y. F. Hierarchical manganese oxide/carbon nanocomposites for supercapacitor electrodes. Nano Res. 2011, 4, 216-225.

16

Yan, H. L.; Zhang, D. Y.; Xu, J. Y.; Lu, Y.; Liu, Y. X.; Qiu, K. W.; Zhang, Y. H.; Luo, Y. S. Solution growth of NiO nanosheets supported on Ni foam as high-performance electrodes for supercapacitors. Nanoscale Res. Lett. 2014, 9, 424.

17

Zhang, D. Y.; Zhang, Y. H.; Li, X. W.; Luo, Y. S.; Huang, H. W.; Wang, J. P.; Chu, P. K. Self-assembly of mesoporous ZnCo2O4 nanomaterials: Density functional theory calculation and flexible all-solid-state energy storage. J. Mater. Chem. A 2016, 4, 568-577.

18

Zhang, D. Y.; Yan, H. L.; Lu, Y.; Qiu, K. W.; Wang, C. L.; Tang, C. C.; Zhang, Y. H.; Cheng, C. W.; Luo, Y. S. Hierarchical mesoporous nickel cobaltite nanoneedle/carbon cloth arrays as superior flexible electrodes for supercapacitors. Nanoscale Res. Lett. 2014, 9, 139-147.

19

Zhang, D. Y.; Yan, H. L.; Lu, Y.; Qiu, K. W.; Wang, C. L.; Zhang, Y. H.; Liu, X. M.; Luo, J. S.; Luo, Y. S. NiCo2O4 nanostructure materials: Morphology control and electrochemical energy storage. Dalton Trans. 2014, 43, 15887-15897.

20

Huang, Y.; Liang, J. J.; Chen, Y. S. An overview of the applications of graphene-based materials in supercapacitors. Small 2012, 8, 1805-1834.

21

Wu, Z. S.; Zhou, G.; Yin, L. C.; Ren, W.; Li, F.; Cheng, H. M. Graphene/metal oxide composite electrode materials for energy storage. Nano Energy 2012, 1, 107-131.

22

An, C. H.; Wang, Y. J.; Wang, Y. P.; Liu, G.; Li, L.; Qiu, F. Y.; Xu, Y. N.; Jiao, L. F.; Yuan, H. T. Facile synthesis and superior supercapacitor performances of Ni2P/rGO nanoparticles. Rsc Adv. 2013, 3, 4628-4633.

23

Marcos, M. D.; Amoros, P.; Beltran-Porter, A.; Martinez-Manez, R.; Attfield, J. P. Novel crystalline microporous transition-metal phosphites M11(HPO3)8(OH)6 (M = Zn, Co, Ni). X-ray powder diffraction structure determination of the cobalt and nickel derivatives. Chem. Mater. 1993, 5, 121-128.

24

Gao, Y. P.; Zhao, J. H.; Run, Z.; Zhang, G. Q.; Pang, H. Microporous M11(HPO3)8(OH)6 nanocrystals for high-performance flexible asymmetric all solid-state supercapacitors. Dalton Trans. 2014, 43, 17000-17005.

25

Pang, H.; Wei, C. Z.; Ma, Y. H.; Zhao, S. S.; Li, G. C.; Zhang, J. S.; Chen, J.; Li, S. J. Nickel phosphite superstructures assembled by nanotubes: original application for effective electrode materials of supercapacitors. ChemPlusChem 2013, 78, 546-553.

26

Pang, H.; Yan, Z. Z.; Wei, Y. Y.; Li, X. X.; Li, J.; Zhang, L.; Chen, J.; Zhang, J. S.; Zheng, H. H. The morphology evolution of nickel phosphite hexagonal polyhedrons and their primary electrochemical capacitor applications. Part. Part. Syst. Char. 2013, 30, 287-295.

27

Lai, X. Y.; Halpert, J. E.; Wang, D. Recent advances in micro-/nano-structured hollow spheres for energy applications: From simple to complex systems. Energy Environ. Sci. 2012, 5, 5604-5618.

28

Xu, S. M.; Hessel, C. M.; Ren, H.; Yu, R. B.; Jin, Q.; Yang, M.; Zhao, H. J.; Wang, D. α-Fe2O3 multi-shelled hollow microspheres for lithium ion battery anodes with superior capacity and charge retention. Energy Environ. Sci. 2014, 7, 632-637.

29

Wang, X. J.; Feng, J.; Bai, Y. C.; Zhang, Q.; Yin, Y. D. Synthesis, properties, and applications of hollow micro-/nanostructures. Chem. Rev. 2016, 116, 10983-11060.

30

Hummers Jr, W. S.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339-1339.

31

Liao, K. M.; Ni, Y. H. Synthesis of hierarchical Ni11(HPO3)8(OH)6 superstructures based on nanorods through a soft hydrothermal route. Mater. Res. Bull. 2010, 45, 205-209.

32

Tong, Y. Y.; Gu, C. D.; Zhang, J. L.; Huang, M. L.; Tang, H.; Wang, X. L.; Tu, J. P. Three-dimensional astrocyte-network Ni-P-O compound with superior electrocatalytic activity and stability for methanol oxidation in alkaline environments. J. Mater. Chem. A 2015, 3, 4669-4678.

33

Gu, Z. J.; Zhai, T. Y.; Gao, B. F.; Zhang, G. J.; Ke, D. M.; Ma, Y.; Yao, J. N. Controlled hydrothermal synthesis of nickel phosphite nanocrystals with hierarchical superstructures. Crystal Growth Design 2007, 7, 825-830.

34

Luo, Y. S.; Luo, J. S.; Zhou, W. W.; Qi, X. Y.; Zhang, H.; Yu, D. Y. W.; Li, C. M.; Fan, H. J.; Yu, T. Controlled synthesis of hierarchical graphene-wrapped TiO2@Co3O4 coaxial nanobelt arrays for high-performance lithium storage. J. Mater. Chem. A 2013, 1, 273-281.

35

Ai, W.; Luo, Z. M.; Jiang, J.; Zhu, J. H.; Du, Z. Z.; Fan, Z. X.; Xie, L. H.; Zhang, H.; Huang, W.; Yu, T. Nitrogen and sulfur codoped graphene: Multifunctional electrode materials for high-performance Li-ion batteries and oxygen reduction reaction. Adv. Mater. 2014, 26, 6186-6192.

36

Pelavin, M.; Hendrickson, D. N.; Hollander, J. M.; Jolly, W. L. Phosphorus 2p electron binding energies. Correlation with extended Hueckel charges. J. Phys. Chem. 1970, 74, 1116-1121.

37

Zhang, G. Q.; Wu, H. B.; Hoster, H. E.; Chan-Park, M. B.; Lou, X. W. D. Single-crystalline NiCo2O4 nanoneedle arrays grown on conductive substrates as binder-free electrodes for high-performance supercapacitors. Energy Environ. Sci. 2012, 5, 9453-9456.

38

Xu, Y. X.; Lin, Z. Y.; Huang, X. Q.; Wang, Y.; Huang, Y.; Duan, X. F. Functionalized graphene hydrogel-based high-performance supercapacitors. Adv. Mater. 2013, 25, 5779-5784.

39

Sun, Y. M.; Hu, X. L.; Luo, W.; Huang, Y. H. Self-assembled hierarchical MoO2/graphene nanoarchitectures and their application as a high-performance anode material for lithium-ion batteries. Acs Nano 2011, 5, 7100-7107.

40

Liang, J.; Jiao, Y.; Jaroniec, M.; Qiao, S. Z. Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance. Angew. Chem., Int. Ed. 2012, 51, 11496-11500.

41

Wang, Y.; Shao, Y. Y.; Matson, D. W.; Li, J. H.; Lin, Y. H. Nitrogen-doped graphene and its application in electrochemical biosensing. ACS Nano 2010, 4, 1790-1798.

42

Bearinger, J. P.; Terrettaz, S.; Michel, R.; Tirelli, N.; Vogel, H.; Textor, M.; Hubbell, J. A. Chemisorbed poly(propylene sulphide)-based copolymers resist biomolecular interactions. Nat. Mater. 2003, 2, 259-264.

43

Zhang, L.; Shi, G. Q. Preparation of highly conductive graphene hydrogels for fabricating supercapacitors with high rate capability. J. Phys. Chem. C 2011, 115, 17206-17212.

44

Yan, J.; Wang, Q.; Wei, T.; Fan, Z. J. Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv. Energy Mater. 2014, 4, 1300816.

45

Zhu, J. H.; Jiang, J.; Sun, Z. P.; Luo, J. S.; Fan, Z. X.; Huang, X. T.; Zhang, H.; Yu, T. 3D carbon/cobalt-nickel mixed-oxide hybrid nanostructured arrays for asymmetric supercapacitors. Small 2014, 10, 2937-2945.

Nano Research
Pages 1651-1663
Cite this article:
Zhang D, Zhang Y, Luo Y, et al. High-performance asymmetrical supercapacitor composed of rGO-enveloped nickel phosphite hollow spheres and N/S co-doped rGO aerogel. Nano Research, 2018, 11(3): 1651-1663. https://doi.org/10.1007/s12274-017-1780-3

804

Views

63

Crossref

N/A

Web of Science

64

Scopus

1

CSCD

Altmetrics

Received: 08 May 2017
Revised: 23 July 2017
Accepted: 28 July 2017
Published: 02 February 2018
© Tsinghua University Press and Springer-Verlag GmbH Germany 2017
Return