AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Flexible memristors as electronic synapses for neuro-inspired computation based on scotch tape-exfoliated mica substrates

Xiaobing Yan1,3,§( )Zhenyu Zhou1,§Jianhui Zhao1Qi Liu2( )Hong Wang1Guoliang Yuan3Jingsheng Chen4
College of Electron and Information EngineeringKey Laboratory of Digital Medical Engineering of Hebei ProvinceKey Laboratory of Optoelectronic Information Materials of Hebei ProvinceHebei UniversityBaoding071002China
Key Laboratory of Microelectronic Devices & Integrated TechnologyInstitute of MicroelectronicsChinese Academy of SciencesBeijing100029China
School of Materials Science and EngineeringNanjing University of Science and TechnologyNanjing210094China
Department of Materials Science and EngineeringNational University of SingaporeSingapore117576Singapore

§ Xiaobing Yan and Zhenyu Zhou contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Flexible memristor devices based on plastic substrates have attracted considerable attention due to their applications in wearable computers and integrated circuits. However, most plastic-substrate memristors cannot function or be grown in high-temperature environments. In this study, scotch-tape-exfoliated mica was used as the flexible memristor substrate in order to resolve these high-temperature issues. Our TiN/ZHO/IGZO memristor, which was constructed using a thin (10 μm) mica substrate, has superior flexibility and thermostability. After bending it 103 times, the device continues to exhibit exceptional electrical characteristics. It can also be implemented for transitions between high and low resistance states, even in temperatures of up to 300 ℃. More importantly, the biological synaptic characteristics of paired-pulse facilitation/depression (PPF/PPD) and spike-timing-dependent plasticity (STDP) were observed through applying different pulse measurement modes. This work demonstrates that flexible memristor devices on mica substrates may potentially allow for the realization of high-temperature memristor applications for biologically-inspired computing systems.

Electronic Supplementary Material

Download File(s)
12274_2017_1781_MOESM1_ESM.pdf (1.8 MB)

References

1

Khan, Y.; Ostfeld, A. E.; Lochner, C. M.; Pierre, A.; Arias, A. C. Monitoring of vital signs with flexible and wearable medical devices. Adv. Mater. 2016, 28, 4373-395.

2

Chen, G.; Xie, X. M.; Shen, G. Z. Flexible organic-inorganic hybrid photodetectors with n-type phenyl-C61-butyric acid methyl ester (PCBM) and p-type pearl-like GaP nanowires. Nano Res. 2014, 7, 1777-1787.

3

Lim, H.; Cho, W. J.; Ha, C. S.; Ando, S.; Kim, Y. K.; Park, C. H.; Lee, K. Flexible organic electroluminescent devices based on fluorine-containing colorless polyimide Substrates. Adv. Mater. 2002, 14, 1275-1279.

4

Watanabe, K.; Iwaki, Y.; Uchida, Y.; Nakamura, D.; Ikeda, H.; Katayama, M.; Cho, T.; Miyake, H.; Yamazaki, S. A foldable OLED display with an in-cell touch sensor having embedded metal-mesh electrodes. J. Soc. Inform. Display 2016, 24, 12-20.

5

Liang, L.; Li, K.; Xiao, C.; Fan, S. J.; Liu, J.; Zhang, W. S.; Xu, W. H.; Tong, W.; Liao, J. Y.; Zhou, Y. Y. et al. Vacancy associates-rich ultrathin nanosheets for high performance and flexible nonvolatile memory device. J. Am. Chem. Soc. 2015, 137, 3102-3108.

6

Chou, H. H.; Nguyen, A.; Chortos, A.; To, J. W. F.; Lu, C.; Mei, J. G.; Kurosawa, T.; Bae W. G.; ToK, J. B. H.; Bao, Z. A. A chameleon-inspired stretchable electronic skin with interactive colour changing controlled by tactile sensing. Nat. Commun. 2015, 6, 8011.

7

Cai, Y. M.; Tan, J.; Liu, Y. F.; Lin, M.; Huang, R. A flexible organic resistance memory device for wearable biomedical applications. Nanotechnology 2016, 27, 275206.

8

Ji, Y.; Cho, B.; Song, S.; Kim, T. W.; Choe, M.; Kahng, Y. H.; Lee, T. Stable switching characteristics of organic nonvolatile memory on a bent flexible substrate. Adv. Mater. 2010, 22, 3071-3075.

9

Kim, S.; Son, J. H.; Lee, S. H.; You, B. K.; Park, K. I.; Lee, H. K.; Byun, M.; Lee, K. J. Flexible crossbar-structured resistive memory arrays on plastic substrates via inorganic- based laser lift-off. Adv. Mater. 2014, 26, 7480-7487.

10

Gu, C.; Lee, J. S. Flexible hybrid organic-inorganic perovskite memory. ACS Nano 2016, 10, 5413-5418.

11

Zhang, P.; Xu, B. H.; Gao, C. X.; Chen, G. L.; Gao, M. Z. Facile synthesis of Co9Se8 quantum dots as charge traps for flexible organic resistive switching memory device. ACS Appl. Mater. Interfaces 2016, 8, 30336-30343.

12

Wang, Z. R.; Joshi, S.; Savel'ev, S. E.; Jiang, H.; Midya, R.; Lin, P.; Hu, M.; Ge, N.; Strachan, P. J.; Li, Z. Y. et al. Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat. Mater. 2017, 16, 101-108.

13

Li, Y.; Xu, L.; Zhong, Y. P.; Zhou, Y. X.; Zhong, S. J.; Hu, Y. Z.; Chua, L. O.; Miao, X. S. Associative learning with temporal contiguity in a memristive circuit for large-scale neuromorphic networks. Adv. Electron. Mater. 2015, 1, 1500125.

14

Jo, S. H.; Chang, T.; Ebong, I.; Bhadviya, B. B.; Mazumder, P.; Lu, W. Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 2010, 10, 1297-1301.

15

Wang, Z. Q.; Xu, H. Y.; Li, X. H.; Yu, H.; Liu, Y. C.; Zhu, X. J. Synaptic learning and memory functions achieved using oxygen ion migration/diffusion in an amorphous InGaZnO memristor. Adv. Funct. Mater. 2012, 22, 2759-2765.

16

Yan, X. B.; Zhou, Z. Y.; Ding, B. F.; Zhao, J. H.; Zhang, Y. Y. Superior resistive switching memory and biological synapse properties based on a simple TiN/SiO2/p-Si tunneling junction structure. J. Mater. Chem. C. 2017, 5, 2259-2267.

17

Jiang, J.; Guo, J. J.; Wan, X.; Yang, Y.; Xie, H. P.; Niu, D. M.; Yang, J. L.; He, J.; Gao, Y. L.; Wan, Q. 2D MoS2 neuromorphic devices for brain-like computational systems. Small 2017, 13, 1700933.

18

Kim, S.; Jeong, H. Y.; Kim, S. K.; Choi, S. Y.; Lee, K. J. Flexible memristive memory array on plastic substrates. Nano Lett. 2011, 11, 5438-5442.

19

Wu, W. F.; Chiou, B. S. Deposition of indium tin oxide films on polycarbonate substrates by radio-frequency magnetron sputtering. Thin Solid Films 1997, 298, 221-227.

20

Yang, Z. W.; Han, S. H.; Yang, T. L.; Ye, L. N.; Ma, H. L.; Cheng, C. F. ITO films deposited on water-cooled flexible substrate by bias RF magnetron sputtering. Appl. Surf. Sci. 2000, 161, 279-285.

21

Werner, M. R.; Fahrner, W. R. Review on materials, microsensors, systems and devices for high-temperature and harsh-environment applications. IEEE Trans. Ind. Electron. 2011, 48, 249-257.

22

Cheng, L.; Fenter, P.; Nagy, K. L.; Schlegel, M. L.; Sturchio, N. C. Molecular-scale density oscillations in water adjacent to a mica surface. Phys. Rev. Lett. 2001, 87, 156103.

23

Schlegel, M. L.; Nagy, K. L.; Fenter, P.; Cheng, L.; Sturchio, N. C.; Jacobsen, S. D. Cation sorption on the muscovite (001) surface in chloride solutions using high-resolution X-ray reflectivity. Geochim. Cosmochim. Acta 2006, 70, 3549-3565.

24

Scales, P. J.; Grieser, F.; Healy, T. W. Electrokinetics of the muscovite mica-aqueous solution interface. Langmuir 1990, 6, 582-589.

25

Israelachvili, J. N.; Pashley, R. M. Molecular layering of water at surfaces and origin of repulsive hydration forces. Nature 1983, 306, 249-250.

26

Kuwahara, Y. Comparison of the surface structure of the tetrahedral sheets of muscovite and phlogopite by AFM. Phys. Chem. Miner. 2001, 28, 1-8.

27

Hu, J.; Xiao, X. D.; Ogletree, D. F.; Salmeron, M. The structure of molecularly thin films of water on mica in humid environments. Surf. Sci. 1995, 344, 221-236.

28

Xu, L.; Lio, A.; Hu, J.; Ogletree, D. F.; Salmeron, M. Wetting and capillary phenomena of water on mica. J. Phys. Chem. B 1998, 102, 540-548.

29

Miranda, P. B.; Xu, L.; Shen, Y. R.; Salmeron, M. Icelike water monolayer adsorbed on mica at room temperature. Phys. Rev. Lett. 1998, 81, 5876-5879.

30

Antognozzi, M.; Humphris, A. D. L.; Miles, M. J. Observation of molecular layering in a confined water film and study of the layers viscoelastic properties. Appl. Phys. Lett. 2001, 78, 300-302.

31

Obreimoff, J. W. The splitting strength of mica. Proc. Roy. Soc. Lond. Ser. A, Math. Phys. Eng. Sci. 1930, 127, 290-297.

32

Wang, Y. F.; Lin, Y. C.; Wang, I. T.; Lin, T. P.; Hou, T. H. Characterization and modeling of nonfilamentary Ta/TaOx/ TiO2/Ti analog synaptic device. Sci. Rep. 2015, 5, 10150.

33

Campbell, P. A.; Sinnamon, L. J.; Thompson, C. E.; Walmsley, D. G. Atomic force microscopy evidence for K+ domains on freshly cleaved mica. Surf. Sci. 1998, 410, L768-L772.

34

Kim, Y. S.; Maeda, N.; Kitada, H.; Fujimoto, K.; Kodama, S.; Kawai, A.; Arai, K.; Suzuki, K.; Nakamura, T.; Ohba, T. Advanced wafer thinning technology and feasibility test for 3D integration. Microelectron. Eng. 2013, 107, 65-71.

35

Poppa, H.; Elliot, A. G. The surface composition of mica substrates. Surf. Sci. 1971, 24, 149-163.

36

Lee, C.; Park, A.; Cho, Y.; Park, M.; Lee, W. I.; Kim, H. W. Influence of ZnO buffer layer thickness on the electrical and optical properties of indium zinc oxide thin films deposited on PET substrates. Ceram. Int. 2008, 34, 1093-1096.

37

Baek, Y. J.; Hu, Q. L.; Yoo, J. W.; Choi, Y. J.; Kang, C. J.; Lee, H. H.; Min, S. H.; Kim, H. M.; Kim, K. B.; Yoon, T. S. Tunable threshold resistive switching characteristics of Pt-Fe2O3 core-shell nanoparticle assembly by space charge effect. Nanoscale 2013, 5, 772-779.

38

Du, C.; Ma, W.; Chang, T.; Sheridan, P.; Lu, W. D. Biorealistic implementation of synaptic functions with oxide memristors through internal ionic dynamics. Adv. Funct. Mater. 2015, 25, 4290-4299.

39

Li, Y.; Zhong, Y. P.; Zhang, J. J.; Xu, L.; Wang, Q.; Sun, H. J.; Tong, H.; Cheng, X.; M. Miao, X. S. Activity- dependent synaptic plasticity of a chalcogenide electronic synapse for neuromorphic systems. Sci. Rep. 2014, 4, 4906.

40

Li, Y.; Zhong, Y. P.; Xu, L.; Zhang, J. J.; Xu, X. H.; Sun, H. J.; Miao, X. S. Ultrafast synaptic events in a chalcogenide memristor. Sci. Rep. 2013, 3, 1619.

41

Yang, Y. C.; Lee, J. H.; Lee, S.; Liu, C. H.; Zhong, Z. H.; Lu, W. Oxide resistive memory with functionalized graphene as built-in selector element. Adv. Mater. 2014, 26, 3693-3699.

42

Chang, S. H.; Lee, J. S.; Chae, S. C.; Lee, S. B.; Liu, C.; Kahng, B.; Kim, D. W.; Noh, T. W. Occurrence of both unipolar memory and threshold resistance switching in a NiO film. Phys. Rev. Lett. 2009, 102, 026801.

43

Lee, M. J.; Kim, S. I.; Lee, C. B.; Yin, H. X.; Ahn, S. E.; Kang, B. S.; Kim, K. H.; Park, J. C.; Kim, C. J.; Song. I.; et al. Low-temperature-grown transition metal oxide based storage materials and oxide transistors for high-density non- volatile memory. Adv. Funct. Mater. 2009, 19, 1587-1593.

44

Lee, M. J.; Han, S.; Jeon, S. H.; Park, B. H.; Kang, B. S.; Ahn, S. E.; Kim, K. H.; Lee, C. B.; Kim C. J.; Yoo, I. K. et al. Electrical manipulation of nanofilaments in transition-metal oxides for resistance-based memory. Nano Lett. 2009, 9, 1476-1481.

45

Tseng, H. C.; Chang, T. C.; Huang, J. J.; Yang, P. C.; Chen, Y. T.; Jian, F. Y.; Sze, S. M.; Tsai, M. J. Investigating the improvement of resistive switching trends after post-forming negative bias stress treatment. Appl. Phys. Lett. 2011, 99, 132104.

46

Zhang, H. J.; Zhang, X. P.; Shi, J. P.; Tian, H. F.; Zhao, Y. G. Effect of oxygen content and superconductivity on the nonvolatile resistive switching in YBa2Cu3O6+x/Nb-doped SrTiO3 heterojunctions. Appl. Phys. Lett. 2009, 94, 092111.

47

Mott, N. F.; Davis, E. A. Electronic Processes in Non- Crystalline Materials; Oxford University Press: Oxford, 1979.

48

Pollak, M. A percolation treatment of dc hopping conduction. J. Non-Cryst. Solids 1972, 11, 1-24.

49

Yang, Y. C.; Sheridan, P.; Lu, W. Complementary resistive switching in tantalum oxide-based resistive memory devices. Appl. Phys. Lett. 2012, 100, 203112.

50

Mott, N. F. Conduction in non-crystalline materials: Ⅲ. Localized states in a pseudogap and near extremities of conduction and valence bands. Philos. Mag. 1969, 19, 835-852.

51

Zhu, X. J.; Du, C.; Jeong, Y.; Lu, W. D. Emulation of synaptic metaplasticity in memristors. Nanoscale 2017, 9, 45-51.

52

Chang, T.; Jo, S. H.; Kim, K. H.; Sheridan, P.; Gaba, S.; Lu, W. Synaptic behaviors and modeling of a metal oxide memristive device. Appl. Phys. A 2011, 102, 857-863.

53

Yang, R.; Terabe, K.; Liu, G. Q.; Tsuruoka, T.; Hasegawa, T.; Gimzewski, J. K.; Aono, M. On-demand nanodevice with electrical and neuromorphic multifunction realized by local ion migration. ACS Nano 2012, 6, 9515-9521.

54

Yan, X. B.; Hao, H.; Chen, Y. F.; Li, Y. C.; Banerjee, W. Highly transparent bipolar resistive switching memory with In-Ga-Zn-O semiconducting electrode in In-Ga-Zn-O/ Ga2O3/In-Ga-Zn-O structure. Appl. Phys. Lett. 2014, 105, 093502.

55

Nian, Y. B.; Strozier, J.; Wu, N. J.; Chen, X.; Ignatiev, A. Evidence for an oxygen diffusion model for the electric pulse induced resistance change effect in transition-metal oxides. Phys. Rev. Lett. 2007, 98, 146403.

56

Ren, S. X.; Zhang, L. Y.; Dong, J. Y.; Huang, Y. F.; Guo, J. J.; Zhang, L.; Zhao, J.; Zhao X.; Chen, W. Electric field control of magnetism in Ti/ZnO/Pt and Ti/ZnO/SRO devices. J. Mater. Chem. C 2015, 3, 4077-4080.

Nano Research
Pages 1183-1192
Cite this article:
Yan X, Zhou Z, Zhao J, et al. Flexible memristors as electronic synapses for neuro-inspired computation based on scotch tape-exfoliated mica substrates. Nano Research, 2018, 11(3): 1183-1192. https://doi.org/10.1007/s12274-017-1781-2

790

Views

94

Crossref

N/A

Web of Science

94

Scopus

4

CSCD

Altmetrics

Received: 09 May 2017
Revised: 25 July 2017
Accepted: 28 July 2017
Published: 02 February 2018
© Tsinghua University Press and Springer-Verlag GmbH Germany 2017
Return