AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Superelastic wire-shaped supercapacitor sustaining 850% tensile strain based on carbon nanotube@graphene fiber

Huimin WangChunya WangMuqiang JianQi WangKailun XiaZhe YinMingchao ZhangXiaoping LiangYingying Zhang( )
Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of EducationDepartment of Chemistry and Center for Nano and Micro Mechanics (CNMM)Tsinghua UniversityBeijing100084China
Show Author Information

Graphical Abstract

Abstract

Stretchable and flexible supercapacitors are highly desired due to their many potential applications in wearable devices. However, it is challenging to fabricate supercapacitors that can withstand large tensile strain while maintaining high performance. Herein, we report an ultra-stretchable wire-shaped supercapacitor based on carbon nanotube@graphene@MnO2 fibers wound around a superelastic core fiber. The supercapacitor can sustain tensile strain up to 850%, which is the highest value reported for this type of device to date, while maintaining stable electrochemical performance. The energy density of the supercapacitor is 3.37 mWh·cm–3 at a power density of 54.0 mW·cm–3. The results show that 82% of the specific capacitance is retained after 1, 000 stretch–release cycles with strains of 700%, demonstrating the superior durability of the elastic supercapacitor and showcasing its potential application in ultra-stretchable flexible electronics.

Electronic Supplementary Material

Download File(s)
12274_2017_1782_MOESM1_ESM.pdf (573.7 KB)

References

1

Rogers, J. A.; Someya, T.; Huang, Y. G. Materials and mechanics for stretchable electronics. Science 2010, 327, 1603–1607.

2

Yang, Y. B.; Yang, X. D.; Tan, Y. N.; Yuan, Q. Recent progress in flexible and wearable bio-electronics based on nanomaterials. Nano Res. 2017, 10, 1560–1583.

3

Bae, J.; Song, M. K.; Park, Y. J.; Kim, J. M.; Liu, M. L.; Wang, Z. L. Fiber supercapacitors made of nanowire-fiber hybrid structures for wearable/flexible energy storage. Angew. Chem., Int. Ed. 2011, 50, 1683–1687.

4

Zou, D. C.; Lv, Z. B.; Cai, X.; Hou, S. C. Macro/ microfiber-shaped electronic devices. Nano Energy 2012, 1, 273–281.

5

Li, P. X.; Shi, E. Z.; Yang, Y. B.; Shang, Y. Y.; Peng, Q. Y.; Wu, S. T.; Wei, J. Q.; Wang, K. L.; Zhu, H. W.; Yuan, Q. et al. Carbon nanotube-polypyrrole core–shell sponge and its application as highly compressible supercapacitor electrode. Nano Res. 2014, 7, 209–218.

6

Choi, S.; Lee, H.; Ghaffari, R.; Hyeon, T.; Kim, D. -H. Recent advances in flexible and stretchable bio-electronic devices integrated with nanomaterials. Adv. Mater. 2016, 28, 4203–4218.

7

Xiao, X.; Li, T. Q.; Yang, P. H.; Gao, Y.; Jin, H. Y.; Ni, W. J.; Zhan, W. H.; Zhang, X. H.; Cao, Y. Z.; Zhong, J. W. et al. Fiber-based all-solid-state flexible supercapacitors for self-powered systems. ACS Nano 2012, 6, 9200–9206.

8

Yu, Z. N.; Thomas, J. Energy storing electrical cables: Integrating energy storage and electrical conduction. Adv. Mater. 2014, 26, 4279–4285.

9

Liu, L. L.; Niu, Z. Q.; Chen, J. Design and integration of flexible planar micro-supercapacitors. Nano Res. 2017, 10, 1524–1544.

10

Yu, D. S.; Qian, Q. H.; Wei, L.; Jiang, W. C.; Goh, K. L.; Wei, J.; Zhang, J.; Chen, Y. Emergence of fiber supercapacitors. Chem. Soc. Rev. 2015, 44, 647–662.

11

Zeng, W.; Shu, L.; Li, Q.; Chen, S.; Wang, F.; Tao, X. M. Fiber-based wearable electronics: A review of materials, fabrication, devices, and applications. Adv. Mater. 2014, 26, 5310–5336.

12

Zhao, X. L.; Zheng, B. N.; Huang, T. Q.; Gao, C. Graphene-based single fiber supercapacitor with a coaxial structure. Nanoscale 2015, 7, 9399–9404.

13

Zhang, Y.; Bai, W. Y.; Cheng, X. L.; Ren, J.; Weng, W.; Chen, P. N.; Fang, X.; Zhang, Z. T.; Peng, H. S. Flexible and stretchable lithium-ion batteries and supercapacitors based on electrically conducting carbon nanotube fiber springs. Angew. Chem., Int. Ed. 2014, 53, 14564–14568.

14

Xu, H. H.; Hu, X. L.; Sun, Y. M.; Yang, H. L.; Liu, X. X.; Huang, Y. H. Flexible fiber-shaped supercapacitors based on hierarchically nanostructured composite electrodes. Nano Res. 2015, 8, 1148–1158.

15

Chen, X. L.; Qiu, L. B.; Ren, J.; Guan, G. Z.; Lin, H. J.; Zhang, Z. T.; Chen, P. N.; Wang, Y. G.; Peng, H. S. Novel electric double-layer capacitor with a coaxial fiber structure. Adv. Mater. 2013, 25, 6436–6441.

16

Wen, L.; Li, F.; Cheng, H. -M. Carbon nanotubes and graphene for flexible electrochemical energy storage: From materials to devices. Adv. Mater. 2016, 28, 4306–4337.

17

Chen, S. H.; Ma, W. J.; Cheng, Y. H.; Weng, Z.; Sun, B.; Wang, L.; Chen, W. P.; Li, F.; Zhu, M. F.; Cheng, H. -M. Scalable non-liquid-crystal spinning of locally aligned graphene fibers for high-performance wearable supercapacitors. Nano Energy 2015, 15, 642–653.

18

Lu, X. F.; Li, G. R.; Tong, Y. X. A review of negative electrode materials for electrochemical supercapacitors. Sci. China Technol. Sci. 2015, 58, 1799–1808.

19

Xu, P.; Gu, T. L.; Cao, Z. Y.; Wei, B. Q.; Yu, J. Y.; Li, F. X.; Byun, J. H.; Lu, W. B.; Li, Q. W.; Chou, T. W. Carbon nanotube fiber based stretchable wire-shaped supercapacitors. Adv. Energy Mater. 2014, 4, 1300759.

20

Meng, Y. N.; Zhao, Y.; Hu, C. G.; Cheng, H. H.; Hu, Y.; Zhang, Z. P.; Shi, G. Q.; Qu, L. T. All-graphene core-sheath microfibers for all-solid-state, stretchable fibriform supercapacitors and wearable electronic textiles. Adv. Mater. 2013, 25, 2326–2331.

21

Zhang, Z. T.; Deng, J.; Li, X. Y.; Yang, Z. B.; He, S. S.; Chen, X. L.; Guan, G. Z.; Ren, J.; Peng, H. S. Superelastic supercapacitors with high performances during stretching. Adv. Mater. 2015, 27, 356–362.

22

Sun, J. F.; Huang, Y.; Fu, C. X.; Wang, Z. Y.; Huang, Y.; Zhu, M. S.; Zhi, C. Y.; Hu, H. High-performance stretchable yarn supercapacitor based on PPy@CNTs@urethane elastic fiber core spun yarn. Nano Energy 2016, 27, 230–237.

23

Jin, H. Y.; Zhou, L. M.; Mak, C. L.; Huang, H. T.; Tang, W. M.; Chan, H. L. W. High-performance fiber-shaped supercapacitors using carbon fiber thread (CFT)@polyanilne and functionalized CFT electrodes for wearable/stretchable electronics. Nano Energy 2015, 11, 662–670.

24

Tang, Q. Q.; Chen, M. M.; Wang, G. C.; Bao, H.; Saha, P. A facile prestrain-stick-release assembly of stretchable supercapacitors based on highly stretchable and sticky hydrogel electrolyte. J. Power Sources 2015, 284, 400–408.

25

Chen, T.; Xue, Y. H.; Roy, A. K.; Dai, L. M. Transparent and stretchable high-performance supercapacitors based on wrinkled graphene electrodes. ACS Nano 2014, 8, 1039–1046.

26

Yang, Z. B.; Deng, J.; Chen, X. L.; Ren, J.; Peng, H. S. A highly stretchable, fiber-shaped supercapacitor. Angew. Chem., Int. Ed. 2013, 52, 13453–13457.

27

Cui, H. -W.; Suganuma, K.; Uchida, H. Highly stretchable, electrically conductive textiles fabricated from silver nanowires and cupro fabrics using a simple dipping-drying method. Nano Res. 2015, 8, 1604–1614.

28

Zheng, Y. M.; Bai, H.; Huang, Z. B.; Tian, X. L.; Nie, F. -Q.; Zhao, Y.; Zhai, J.; Jiang, L. Directional water collection on wetted spider silk. Nature 2010, 463, 640–643.

29

Yang, Z. B.; Ren, J.; Zhang, Z. T.; Chen, X. L.; Guan, G. Z.; Qin, L. B.; Zhang, Y.; Peng, H. S. Recent advancement of nanostructured carbon for energy applications. Chem. Rev. 2015, 115, 5159–5223.

30

Choi, C.; Kim, S. H.; Sim, H. J.; Lee, J. A.; Choi, A. Y.; Kim, Y. T.; Lepró, X.; Spinks, G. M.; Baughman, R. H.; Kim, S. J. Stretchable, weavable coiled carbon nanotube/ MnO2/polymer fiber solid-state supercapacitors. Sci. Rep. 2015, 5, 9387.

31

Yu, J. L.; Wang, L. Y.; Lai, X. H.; Pei, S. P.; Zhuang, Z. B.; Meng, L. H.; Huang, Y. D.; Li, Q. W.; Lu, W. B.; Byun, J. H. et al. A durability study of carbon nanotube fiber based stretchable electronic devices under cyclic deformation. Carbon 2015, 94, 352–361.

32

Ramachandran, R.; Chen, S. -M.; Kumar, G. G. An overview of electrochemical energy storage devices of various electrodes and morphological studies of supercapacitors. Int. J. Electrochem. Sci. 2015, 10, 10355–10388.

33

Yu, G. H.; Hu, L. B.; Vosgueritchian, M.; Wang, H. L.; Xie, X.; McDonough, J. R.; Cui, X.; Cui, Y.; Bao, Z. N. Solution-processed graphene/MnO2 nanostructured textiles for high-performance electrochemical capacitors. Nano Lett. 2011, 11, 2905–2911.

34

Choi, C.; Lee, J. A.; Choi, A. Y.; Kim, Y. T.; Lepró, X.; Lima, M. D.; Baughman, R. H.; Kim, S. J. Flexible supercapacitor made of carbon nanotube yarn with internal pores. Adv. Mater. 2014, 26, 2059–2065.

35

Liu, K.; Sun, Y. H.; Chen, L.; Feng, C.; Feng, X. F.; Jiang, K. L.; Zhao, Y. G.; Fan, S. S. Controlled growth of super- aligned carbon nanotube arrays for spinning continuous unidirectional sheets with tunable physical properties. Nano Lett. 2008, 8, 700–705.

36

Zhang, Y. Y.; Zou, G. F.; Doorn, S. K.; Htoon, H.; Stan, L.; Hawley, M. E.; Sheehan, C. J.; Zhu, Y. T.; Jia, Q. X. Tailoring the morphology of carbon nanotube arrays: From spinnable forests to undulating foams. ACS Nano 2009, 3, 2157–2162.

37

Zhang, X. B.; Jiang, K. L.; Teng, C.; Liu, P.; Zhang, L.; Kong, J.; Zhang, T. H.; Li, Q. Q.; Fan, S. S. Spinning and processing continuous yarns from 4-inch wafer scale superaligned carbon nanotube arrays. Adv. Mater. 2006, 18, 1505–1510.

38

Kosynkin, D. V.; Higginbotham, A. L.; Sinitskii, A.; Lomeda, J. R.; Dimiev, A.; Price, B. K.; Tour, J. M. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 2009, 458, 872–876.

39

Moon, I. K.; Lee, J.; Ruoff, R. S.; Lee, H. Reduced graphene oxide by chemical graphitization. Nat. Commun. 2010, 1, 73.

40

Higginbotham, A. L.; Kosynkin, D. V.; Sinitskii, A.; Sun, Z. Z.; Tour, J. M. Lower-defect graphene oxide nanoribbons from multiwalled carbon nanotubes. ACS Nano 2010, 4, 2059–2069.

41

Fang, X.; Yang, Z. B.; Qiu, L. B.; Sun, H.; Pan, S. W.; Deng, J.; Luo, Y. F.; Peng, H. S. Core-sheath carbon nanostructured fibers for efficient wire-shaped dye-sensitized solar cells. Adv. Mater. 2014, 26, 1694–1698.

42

Chen, T.; Wang, S. T.; Yang, Z. B.; Feng, Q. Y.; Sun, X. M.; Li, L.; Wang, Z. S.; Peng, H. S. Flexible, light-weight, ultrastrong, and semiconductive carbon nanotube fibers for a highly efficient solar cell. Angew. Chem., Int. Ed. 2011, 50, 1815–1819.

43

Dong, X. C.; Wang, X. W.; Wang, L.; Song, H.; Li, X. G.; Wang, L. H.; Chan-Park, M. B.; Li, C. M.; Chen, P. Synthesis of a MnO2-graphene foam hybrid with controlled MnO2 particle shape and its use as a supercapacitor electrode. Carbon 2012, 50, 4865–4870.

44

Hsu, Y. K.; Chen, Y. C.; Lin, Y. G.; Chen, L. C.; Chen, K. H. Reversible phase transformation of MnO2 nanosheets in an electrochemical capacitor investigated by in situ Raman spectroscopy. Chem. Commun. 2011, 47, 1252–1254.

45

Lin, X. -D.; Uzayisenga, V.; Li, J. -F.; Fang, P. -P.; Wu, D. -Y.; Ren, B.; Tian, Z. -Q. Synthesis of ultrathin and compact Au@MnO2 nanoparticles for shell-isolated nanoparticle- enhanced Raman spectroscopy (SHINERS). J. Raman Spectr. 2012, 43, 40–45.

46

Wang, G. M.; Wang, H. Y.; Lu, X. H.; Ling, Y. C.; Yu, M. H.; Zhai, T.; Tong, Y. X.; Li, Y. Solid-state supercapacitor based on activated carbon cloths exhibits excellent rate capability. Adv. Mater. 2014, 26, 2676–2682.

47

Yu, D. S.; Zhai, S. L.; Jiang, W. C.; Goh, K.; Wei, L.; Chen, X. D.; Jiang, R. R.; Chen, Y. Transforming pristine carbon fiber tows into high performance solid-state fiber supercapacitors. Adv. Mater. 2015, 27, 4895–4901.

48

Di Fabio, A.; Giorgi, A.; Mastragostino, M.; Soavi, F. Carbon-poly(3-methylthiophene) hybrid supercapacitors. J. Electrochem. Soc. 2001, 148, A845–A850.

49

Wu, M. -S.; Huang, C. -Y.; Lin, K. -H. Electrophoretic deposition of nickel oxide electrode for high-rate electrochemical capacitors. J. Power Sources 2009, 186, 557–564.

50

Fan, Z. J.; Yan, J.; Wei, T.; Zhi, L. J.; Ning, G. Q.; Li, T. Y.; Wei, F. Asymmetric supercapacitors based on graphene/ MnO2 and activated carbon nanofiber electrodes with high power and energy density. Adv. Funct. Mater. 2011, 21, 2366–2375.

51

Huang, Y.; Zhong, M.; Huang, Y.; Zhu, M. S.; Pei, Z. X.; Wang, Z. F.; Xue, Q.; Xie, X. M.; Zhi, C. Y. A self-healable and highly stretchable supercapacitor based on a dual crosslinked polyelectrolyte. Nat. Commun. 2015, 6, 10310.

52

Yang, P. H.; Xiao, X.; Li, Y. Z.; Ding, Y.; Qiang, P. F.; Tan, X. H.; Mai, W. J.; Lin, Z. Y.; Wu, W. Z.; Li, T. Q. et al. Hydrogenated ZnO core–shell nanocables for flexible supercapacitors and self-powered systems. ACS Nano 2013, 7, 2617–2626.

53

Le, V. T.; Kim, H.; Ghosh, A.; Kim, J.; Chang, J.; Vu, Q. A.; Pham, D. T.; Lee, J. H.; Kim, S. W.; Lee, Y. H. Coaxial fiber supercapacitor using all-carbon material electrodes. ACS Nano 2013, 7, 5940–5947.

54

Wang, W. J.; Hao, Q. L.; Lei, W.; Xia, X. F.; Wang, X. Graphene/SnO2/polypyrrole ternary nanocomposites as supercapacitor electrode materials. RSC Adv. 2012, 2, 10268–10274.

Nano Research
Pages 2347-2356
Cite this article:
Wang H, Wang C, Jian M, et al. Superelastic wire-shaped supercapacitor sustaining 850% tensile strain based on carbon nanotube@graphene fiber. Nano Research, 2018, 11(5): 2347-2356. https://doi.org/10.1007/s12274-017-1782-1

794

Views

74

Crossref

N/A

Web of Science

78

Scopus

3

CSCD

Altmetrics

Received: 15 May 2017
Revised: 25 July 2017
Accepted: 28 July 2017
Published: 12 May 2018
© Tsinghua University Press and Springer‐Verlag GmbH Germany 2017
Return