Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Van der Waals interfacial bonding and intermixing in GeTe-Sb2Te3-based superlattices

Andriy Lotnyk()Isom HilmiUlrich RossBernd Rauschenbach
Leibniz Institute of Surface Modification (IOM)Permoserstr. 15LeipzigD-04318Germany
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

Interfacial phase change memory (iPCM) based on GeTe and Sb2Te3 superlattices (SLs) is an emerging contender for non-volatile data storage applications. A detailed knowledge of the atomic structure of these materials is crucial for further development of SLs and for a better understanding of the resistivity switching characteristics of iPCM devices. In this work, crystalline GeTe-Sb2Te3-based SLs, produced by pulsed laser deposition onto a Si(111) substrate at temperatures lower than in previous studies, are analyzed by advanced scanning transmission electron microscopy. The results reveal the formation of Ge-rich Ge(x+y)Sb(2–y)Tez building blocks with specific numbers of ordered Ge cation layers (between 1 and 5) and disordered cation layers (4) for z = 6–10, as well as intermixed cation layers for z = 5, within the SLs. The G Ge(x+y)Sb(2–y)Tez units are separated from the Sb2Te3 building blocks by van der Waals gaps. In particular, the interlayer bonding is promoted by the formation of outermost cation layers consisting of intermixed GeSb within the building blocks adjacent to the van der Waals gaps. The Ge(x+y)Sb(2–y)Tez units with z > 5 retain metastable crystal structures with two-dimensional bonding within the SLs. The present study shed new light on the possible configurations of the building units that can be formed during the synthesis of GeTe-Sb2Te3-based iPCM materials. In addition, a possible switching mechanism active in iPCM materials is discussed.

Electronic Supplementary Material

Download File(s)
12274_2017_1785_MOESM1_ESM.pdf (445.9 KB)

References

1

Feinleib, J.; Deneufville, J.; Moss, S. C.; Ovshinsky, S. R. Rapid reversible light-induced crystallization of amorphous semiconductors. Appl. Phys. Lett. 1971, 18, 254-257.

2

Wuttig, M.; Yamada, N. Phase-change materials for rewriteable data storage. Nat. Mater. 2007, 6, 824-832.

3

Simpson, R. E.; Fons, P.; Kolobov, A. V.; Fukaya, T.; Krbal, M.; Yagi, T.; Tominaga, J. Interfacial phase-change memory. Nat. Nanotechnol. 2011, 6, 501-505.

4

Momand, J.; Wang, R. N.; Boschker, J. E.; Verheijen, M. A.; Calarco, R.; Kooi, B. J. Interface formation of two- and three-dimensionally bonded materials in the case of GeTe- Sb2Te3 superlattices. Nanoscale 2015, 7, 19136-19143.

5

Wang, R. N.; Bragaglia, V.; Boschker, J. E.; Calarco, R. Intermixing during epitaxial growth of van der Waals bonded nominal GeTe/Sb2Te3 superlattices. Cryst. Growth Des. 2016, 16, 3596-3601.

6

Casarin, B.; Caretta, A.; Momand, J.; Kooi, B. J.; Verheijen, M. A.; Bragaglia, V.; Calarco, R.; Chukalina, M.; Yu, X. M.; Robertson, J. et al. Revisiting the local structure in Ge-Sb-Te based chalcogenide superlattices. Sci. Rep. 2016, 6, 22353.

7

Momand, J.; Lange, F. R. L.; Wang, R. N.; Boschker, J. E.; Verheijen, M. A.; Calarco, R.; Wuttig, M.; Kooi, B. J. Atomic stacking and van-der-Waals bonding in GeTe-Sb2Te3 superlattices. J. Mater. Res. 2016, 31, 3115-3124.

8

Lotnyk, A.; Ross, U.; Bernütz, S.; Thelander, E.; Rauschenbach, B. Local atomic arrangements and lattice distortions in layered Ge-Sb-Te crystal structures. Sci. Rep. 2016, 6, 26724.

9

Tominaga, J.; Kolobov, A. V.; Fons, P.; Nakano, T.; Murakami, S. Ferroelectric order control of the dirac-semimetal phase in GeTe-Sb2Te3 superlattices. Adv. Mater. Interfaces 2014, 1, 1300027.

10

Tominaga, J.; Kolobov, A. V.; Fons, P. J.; Wang, X. M.; Saito, Y.; Nakano, T.; Hase, M.; Murakami, S.; Herfort, J.; Takagaki, Y. Giant multiferroic effects in topological GeTe- Sb2Te3 superlattices. Sci. Technol. Adv. Mater. 2015, 16, 014402.

11

Ohyanagi, T.; Kitamura, M.; Araidai, M.; Kato, S.; Takaura, N.; Shiraishi, K. GeTe sequences in superlattice phase change memories and their electrical characteristics. Appl. Phys. Lett. 2014, 104, 252106.

12

Yu, X. M.; Robertson, J. Modeling of switching mechanism in GeSbTe chalcogenide superlattices. Sci. Rep. 2015, 5, 12612.

13

Yu, X. M.; Robertson, J. Atomic layering, intermixing and switching mechanism in Ge-Sb-Te based chalcogenide superlattices. Sci. Rep. 2016, 6, 37325.

14

Kalikka, J.; Zhou, X. L.; Behera, J.; Nannicini, G.; Simpson, R. E. Evolutionary design of interfacial phase change van der Waals heterostructures. Nanoscale 2016, 8, 18212-18220.

15

Lotnyk, A.; Poppitz, D.; Ross, U.; Gerlach, J. W.; Frost, F.; Bernuütz, S.; Thelander, E.; Rauschenbach, B. Focused high- and low-energy ion milling for TEM specimen preparation. Microelectroni. Reliab. 2015, 55, 2119-2125.

16
Barthel, J. Probe-STEM simulation software[Online]. http://www.er-c.org/barthel/drprobe.
17

Schneider, M. N.; Oeckler, O. Unusual solid solutions in the system Ge-Sb-Te: The crystal structure of 33R- Ge4-xSb2-yTe7(x, y ≈ 0.1) is Isostructural to that of Ge3Sb2Te6. Z. Anorg. Allg. Chem. 2008, 634, 2557-2561.

18

Urban, P.; Schneider, M. N.; Erra, L.; Welzmiller, S.; Fahrnbauer, F.; Oeckler, O. Temperature dependent resonant X-ray diffraction of single-crystalline Ge2Sb2Te5. CrystEngComm 2013, 15, 4823-4829.

19

Kokh, K. A.; Atuchin, V. V.; Gavrilova, T. A.; Kuratieva, N. V.; Pervukhina, N. V.; Surovtsev, N. V. Microstructural and vibrational properties of PVT grown Sb2Te3 crystals. Solid State Commun. 2014, 177, 16-19.

20

Bauer Pereira, P.; Sergueev, I.; Gorsse, S.; Dadda, J.; Müller, E.; Hermann, R. P. Lattice dynamics and structure of GeTe, SnTe and PbTe. Phys. Status Solidi B 2013, 250, 1300-1307.

21

Ross, U.; Lotnyk, A.; Thelander, E.; Rauschenbach, B. Direct imaging of crystal structure and defects in metastable Ge2Sb2Te5 by quantitative aberration-corrected scanning transmission electron microscopy. Appl. Phys. Lett. 2014, 104, 121904.

22

Lotnyk, A.; Bernütz, S.; Sun, X. X.; Ross, U.; Ehrhardt, M.; Rauschenbach, B. Real-space imaging of atomic arrangement and vacancy layers ordering in laser crystallised Ge2Sb2Te5 phase change thin films. Acta Mater. 2016, 105, 1-8.

23

Mio, A. M.; Privitera, M. S.; Bragaglia, V.; Arciprete, F.; Bongiorno, C.; Calarco, R.; Rimini, E. Chemical and structural arrangement of the trigonal phase in GeSbTe thin films. Nanotechnology 2017, 28, 065706.

24

Hilmi, I.; Lotnyk, A.; Gerlach, J. W.; Schumacher, P.; Rauschenbach, B. Epitaxial formation of cubic and trigonal Ge-Sb-Te thin films with heterogeneous vacancy structures. Mater. Des. 2017, 115, 138-146.

25

Hartel, P.; Rose, H.; Dinges, C. Conditions and reasons for incoherent imaging in STEM. Ultramicroscopy 1996, 63, 93-114.

26

Rafferty, B.; Nellist, D.; Pennycook, J. On the origin of transverse incoherence in Z-contrast STEM. J. Electron Microsc. 2001, 50, 227-233.

27

Wang, Z. W.; Li, Z. Y.; Park, S. J.; Abdela, A.; Tang, D.; Palmer, R. E. Quantitative Z-contrast imaging in the scanning transmission electron microscope with size-selected clusters. Phys. Rev. B 2011, 84, 073408.

28

Kim, S.; Jung, Y.; Kim, J. J.; Lee, S.; Lee, H. Z-contrast dependence of quantitative scanning transmission electron microscopy image of Si1-xGex binary crystals. J. Alloys Compd. 2015, 618, 545-550.

29

Ross, U.; Lotnyk, A.; Thelander, E.; Rauschenbach, B. Microstructure evolution in pulsed laser deposited epitaxial Ge-Sb-Te chalcogenide thin films. J. Alloys Compd. 2016, 676, 582-590.

30

Hurych, Z.; Benbow R. L. Photoemission studies of interface properties of thin Bi overlayers on two-dimensional crystals of BixSb2-xTe3 semiconductors using synchrotron radiation. Phys. Rev. B 1977, 16, 3707-3712.

31

Wagner, V.; Doling, G.; Powell, B.M.; Landweher, G. Lattice vibrations of Bi2Te3. Phys. Status Solidi B 1978, 85, 311-317.

32

Sa, B. S.; Miao, N. H.; Zhou, J.; Sun, Z. M.; Ahuja, R. Ab initio study of the structure and chemical bonding of stable Ge3Sb2Te6. Phys. Chem. Chem. Phy. 2010, 12, 1585-1588.

33

Matsunaga, T.; Kojima, R.; Yamada, N.; Kifune, K.; Kubota, Y.; Takata, M. Structural investigation of Ge3Sb2Te6, an intermetallic compound in the GeTe-Sb2Te3 homologous series. Appl. Phys. Lett. 2007, 90, 161919.

34

Matsunaga, T.; Yamada, N.; Kubota, Y. Structures of stable and metastable Ge2Sb2Te5, an intermetallic compound in GeTe-Sb2Te3 pseudobinary systems. Acta Cryst. B 2004, 60, 685-691.

35

Da Silva, J. L. F.; Walsh, A.; Lee, H. Insights into the structure of the stable and metastable (GeTe)m(Sb2Te3)m compounds. Phys. Rev. B 2008, 78, 224111.

36

Gorbenko, O. Y.; Samoilenkov, S. V.; Graboy, I. E.; Kaul, A. R. Epitaxial stabilization of oxides in thin films. Chem. Mat. 2002, 14, 4026-4043.

37

Lotnyk, A.; Senz, S.; Hesse, D. Orientation relationships of SrTiO3 and MgTiO3 thin films grown by vapor-solid reactions on (100) and (110) TiO2(rutile) single crystals. J. Phys. Chem. C 2007, 111, 6372-6379.

38

Lee, S.; Ivanov, I. N.; Keum, J. K.; Lee, H. N. Epitaxial stabilization and phase instability of VO2 polymorphs. Sci. Rep. 2016, 6, 19621.

39

Gaspard, J. P.; Ceolin, R. Hume-rothery rule in Ⅴ-Ⅵ compounds. Solid State Commun. 1992, 84, 839-842.

40

Gaspard, J. P. Structure of covalently bonded materials: From the peierls distortion to phase-change materials. C. R. Phys. 2016, 17, 389-405.

Nano Research
Pages 1676-1686
Cite this article:
Lotnyk A, Hilmi I, Ross U, et al. Van der Waals interfacial bonding and intermixing in GeTe-Sb2Te3-based superlattices. Nano Research, 2018, 11(3): 1676-1686. https://doi.org/10.1007/s12274-017-1785-y
Metrics & Citations  
Article History
Copyright
Return