AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Mechanically robust antireflective coatings

Sadaf Bashir Khan1Hui Wu1Xiaochen Huai1Sumeng Zou1Yuehua Liu1Zhengjun Zhang2( )
The State Key Laboratory for New Ceramics & Fine ProcessingSchool of Materials Science & EngineeringTsinghua UniversityBeijing100084China
Advanced Key Laboratory for New CeramicsSchool of Materials Science & EngineeringTsinghua UniversityBeijing100084China
Show Author Information

Graphical Abstract

Abstract

Mechanical strength is an essential parameter that influences and limits the lifetime performance of antireflective (AR) coatings in optical devices. Specifically, amphiphobic AR coatings with reduced reflectance are of great significance as they considerably enlarge the range of fundamental applications. Herein, we describe the design and fabrication of amphiphobic AR coatings with reduced reflectance and enhanced mechanical resilience. Introducing a thin polytetrafluoroethylene (PTFE) layer on top of the bilayer SiO2 coating via vapor deposition method makes it highly liquid repellent. We achieved reduced reflectance (< 1%) over the entire visible wavelength range, as well as tunability according to the desired wavelength region. The fabricated film showed better thermal stability (up to 300 ℃) with stable AR efficiency, when an ultrathin dense coat of Al2O3 was deposited via atomic layer deposition (ALD) on the polymer-based bilayer SiO2 antireflective coating (P-BSAR). The experimental results prove that the omnidirectional AR coating in this study exhibits multifunctional properties and should be suitable for the production of protective optical equipment and biocompatible polymer films for the displays of portable electronic devices.

Electronic Supplementary Material

Download File(s)
12274_2017_1787_MOESM1_ESM.pdf (4.9 MB)

References

1

Zhou, X. Y.; Zhang, Z. Z.; Xu, X. H.; Guo, F.; Zhu, X. T.; Men, X. H.; Ge, B. Robust and durable superhydrophobic cotton fabrics for oil/water separation. ACS Appl. Mater. Interfaces 2013, 5, 7208-7214.

2

Ganesh, V. A.; Raut, H. K.; Nair, A. S.; Seeram, R. A review on self-cleaning coatings. J. Mater. Chem. 2011, 21, 16304-16322.

3

Cassie, A. B. D.; Baxter, S. Wettability of porous surfaces. Trans. Faraday Soc. 1944, 40, 546-551.

4

Bhushan, B.; Nosonovsk, M. The rose petal effect and the modes of superhydrophobicity. Phil. Trans. R. Soc. A: Math. Eng. Sci. 2010, 368, 4713-4728.

5

Sun, Y. W.; Wang, L. L.; Gao, Y. Z.; Guo, D. M. Preparation of stable superamphiphobic surfaces on Ti-6Al-4V substrates by one-step anodization. Appl. Surf. Sci. 2015, 324, 825-830.

6

Du, X.; Li, X. Y.; He, J. H. Facile fabrication of hierarchically structured silica coatings from hierarchically mesoporous silica nanoparticles and their excellent superhydrophilicity and superhydrophobicity. ACS Appl. Mater. Interfaces 2010, 2, 2365-2372.

7

Xu, L. G.; He, J. H. Fabrication of highly transparent superhydrophobic coatings from hollow silica nanoparticles. Langmuir 2012, 28, 7512-7518.

8

Schaeffer, D. A.; Polizos, G.; Smith, B. D.; Lee, D. F.; Hunter, S. R.; Datskos, P. G. Optically transparent and environmentally durable superhydrophobic coating based on functionalized SiO2 nanoparticles. Nanotechnology 2015, 26, 055602.

9

Steele, A.; Bayer, I.; Loth, E. Inherently superoleophobic nanocomposite coatings by spray atomization. Nano Lett. 2009, 9, 501-505.

10

Tuteja, A.; Choi, W.; McKinley, G. H.; Cohen, R. E.; Rubner, M. F. Design parameters for superhydrophobicity and superoleophobicity. MRS Bull. 2008, 33, 752-758.

11

Tuteja, A.; Choi, W.; Ma, M. L.; Mabry, J. M.; Mazzella, S. A.; Rutledge, G. C.; McKinley, G. H.; Cohen, R. E. Designing superoleophobic surfaces. Science 2007, 318, 1618-1622.

12

Im, M.; Im, H.; Lee, J. H.; Yoon J. B.; Choi, Y. K. A robust superhydrophobic and superoleophobic surface with inverse-trapezoidal microstructures on a large transparent flexible substrate. Soft Matter 2010, 6, 1401-1404.

13

Lee, S. G.; Ham, D. S.; Lee, D. Y.; Bong, H.; Cho, K. Transparent superhydrophobic/translucent superamphiphobic coatings based on silica-fluoropolymer hybrid nanoparticles. Langmuir 2013, 29, 15051-15057.

14

Ganesh, V. A.; Dinachali, S. S.; Raut, H. K.; Walsh, T. M.; Nair, A. S.; Ramakrishna, S. Electrospun SiO2 nanofibers as a template to fabricate a robust and transparent superamphiphobic coating. RSC Adv. 2013, 3, 3819-3824.

15

Ge, D. T.; Yang, L. L.; Zhang, Y. F.; Rahmawan, Y.; Yang, S. Transparent and superamphiphobic surfaces from one-step spray coating of stringed silica nanoparticle/sol solutions. Part. Part. Syst. Charact. 2014, 31, 763-770.

16

Steele, A.; Bayer, I.; Loth, E. Inherently superoleophobic nanocomposite coatings by spray atomization. Nano Lett. 2009, 9, 501-505.

17

Nishizawa, S.; Shiratori, S. Fabrication of semi-transparent superoleophobic thin film by nanoparticle-based nano-microstructures on see-through fabrics. J. Mater. Sci. 2013, 48, 6613-6618.

18

Sheen, Y. C.; Huang, Y. C.; Liao, C. S.; Chou, H. Y.; Chang, F. C. New approach to fabricate an extremely super-amphiphobic surface based on fluorinated silica nanoparticles. J. Polym. Sci. Part B: Polym. Phys. 2008, 46, 1984-1990.

19

Vourdas, N. E.; Vlachopoulou, M. E.; Tserepi, A.; Gogolides, E. Nano-textured polymer surfaces with controlled wetting and optical properties using plasma processing. Int. J. Nanotechnol. 2009, 6, 196-207.

20

Xu, L. B.; Karunakaran, R. G.; Guo, J.; Yang, S. Transparent, superhydrophobic surfaces from one-step spin coating of hydrophobic nanoparticles. ACS Appl. Mater. Interfaces 2012, 4, 1118-1125.

21

Manabe, K.; Nishizawa, S.; Kyung, K. H.; Shiratori, S. Optical phenomena and antifrosting property on biomimetics slippery fluid-infused antireflective films via layer-by-layer comparison with superhydrophobic and antireflective films. ACS Appl. Mater. Interfaces 2014, 6, 13985-13993.

22

Zhou, H.; Wang, H. X.; Niu, H. T.; Gestos, A.; T. Lin, T. Robust, self-healing superamphiphobic fabrics prepared by two-step coating of fluoro-containing polymer, fluoroalkyl silane, and modified silica nanoparticles. Adv. Funct. Mater. 2013, 23, 1664-1670.

23

Faustini, M.; Nicole, L.; Boissière, C.; Innocenzi, P.; Sanchez, C.; Grosso, D. Hydrophobic, antireflective, self-cleaning, and antifogging sol-gel coatings: An example of multifunctional nanostructured materials for photovoltaic cells. Chem. Mater. 2010, 22, 4406-4413.

24

Wong, T. S.; Kang, S. H.; Tang, S. K. Y.; Smythe, E. J.; Hatton, B. D.; Grinthal, A.; Aizenberg, J. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 2011, 477, 443-447.

25

Urata, C.; Masheder, B.; Cheng, D. F.; Hozumi, A. A thermally stable, durable and temperature-dependent oleophobic surface of a polymethylsilsesquioxane film. Chem. Commun. 2013, 49, 3318-3320.

26

Kitamura, R.; Pilon, L.; Jonasz, M. Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature. Appl. Opt. 2007, 46, 8118-8133.

27

Adair, R.; Chase, L. L.; Payne, S. A. Nonlinear refractive-index measurements of glasses using three-wave frequency mixing. J. Opt. Soc. Am. B, 1987, 4, 875-881.

28

Mazumder, P.; Jiang, Y. D.; Baker, D.; Carrilero, A.; Tulli, D.; Infante, D.; Hunt, A. T.; Pruneri, V. Superomniphobic, transparent, and antireflection surfaces based on hierarchical nanostructures. Nano Lett. 2014, 14, 4677-4681.

29

Moghal, J.; Kobler, J.; Sauer, J.; Best, J.; Gardener, M.; Watt, A. A. R.; Wakefield. G. High-performance, single-layer antireflective optical coatings comprising mesoporous silica nanoparticles. ACS Appl. Mater. Interfaces 2012, 4, 854-859.

30

Kars, İ.; Çetin, S. Ş.; Kınacı, B.; Sarıkavak, B.; Bengi, A.; Altuntaş, H.; Öztürk, M. K.; Özçelik, S. Influence of thermal annealing on the structure and optical properties of d. c. magnetron sputtered titanium dioxide thin films. Surf. Interface Anal. 2010, 42, 1247-1251.

31

Kulczyk-Malecka, J.; Kelly, P. J.; West, G.; Clarke, G. C. B.; Ridealgh, J. A. Characterisation studies of the structure and properties of as-deposited and annealed pulsed magnetron sputtered titania coatings. Coatings 2013, 3, 166-176.

32

Wilson, C. A.; Grubbs, R. K.; George, S. M. Nucleation and growth during Al2O3 atomic layer deposition on polymers. Chem. Mater. 2005, 17, 5625-5634.

33

Zhang, X. Y.; Zhao, J.; Whitney, A. V.; Elam, J. W.; Van Duyne, R. P. Ultrastable substrates for surface-enhanced Raman spectroscopy: Al2O3 overlayers fabricated by atomic layer deposition yield improved anthrax biomarker detection. J. Am. Chem. Soc. 2006, 128, 10304-10309.

34

Whitney, V. A.; Elam, J. W.; Zou, S. L.; Zinovev, V. A.; Stair, P. C.; Schatz, G. C.; Van Duyne, R. P. Localized surface plasmon resonance nanosensor: A high-resolution distance-dependence study using atomic layer deposition. J. Phys. Chem. B 2005, 109, 20522-20528.

35

Bakshi, S. R.; Lahiri, D.; Patel, R. R. Agarwal, A. Nanoscratch behavior of carbon nanotube reinforced aluminum coatings. Thin Solid Films 2010, 518, 1703-1711.

36

Deng, H.; Scharf, T. W.; Barnard, J. A. Adhesion assessment of silicon carbide, carbon, and carbon nitride ultrathin overcoats by nanoscratch techniques. J. Appl. Phys. 1997, 81, 5396-5398.

37

Beake, B. D.; Vishnyakov, V. M.; Harris, A. J. Relationship between mechanical properties of thin nitride-based films and their behaviour in nano-scratch tests. Tribol. Int. 2011, 44, 468-475.

38

Rau, K.; Singh. R.; Goldberg, E. Nanoindentation and nanoscratch measurements on silicone thin films synthesized by pulsed laser ablation deposition (PLAD). Mat. Res. Innovat. 2002, 5, 151-161.

39

Manabe, K.; Matsuda, M.; Nakamura, C.; Takahashi, K.; Kyung, K. H.; Shiratori, S. Antifibrinogen, antireflective, antifogging surfaces with biocompatible nano-ordered hierarchical texture fabricated by layer-by-layer self-assembly. Chem. Mater. 2017, 29, 4745-4753.

40

Tiwari, M. K.; Bayer, I. S.; Jursich, G. M.; Schutzius, T. M.; Megaridis, C. M. Highly liquid-repellent, large-area, nanostructured poly(vinylidenefluoride)/poly(ethyl 2-cyanoacrylate) composite coatings: Particle filler effects. ACS Appl. Mater. Interfaces 2010, 2, 1114-1119.

41

Hou, X. H.; Deem, P. T.; Choy, K. L. Hydrophobicity study of polytetrafluoroethylene nanocomposite films. Thin solid Films 2012, 520, 4916-4920.

42

Koch K.; Ensikat, H. J. The hydrophobic coatings of plant surfaces: Epicuticular wax crystals and their morphologies, crystallinity and molecular self-assembly. Micron 2008, 39, 759-772.

43

Cheng, Y. T.; Rodak, D. E.; Wong, C. A.; Hayden, C. A. Effects of micro-and nano-structures on the self-cleaning behaviour of lotus leaves. Nanotechnology 2006, 17, 1359-1362.

44

Mortazavi, V.; D'Souza, R. M., Nosonovsky, M. Study of contact angle hysteresis using the Cellular Potts Model. Phys. Chem. Chem. Phys. 2013, 15, 2749-2756.

Nano Research
Pages 1699-1713
Cite this article:
Khan SB, Wu H, Huai X, et al. Mechanically robust antireflective coatings. Nano Research, 2018, 11(3): 1699-1713. https://doi.org/10.1007/s12274-017-1787-9

708

Views

27

Crossref

N/A

Web of Science

27

Scopus

0

CSCD

Altmetrics

Received: 27 March 2017
Revised: 31 July 2017
Accepted: 01 August 2017
Published: 02 February 2018
© Tsinghua University Press and Springer-Verlag GmbH Germany 2017
Return