Graphical Abstract

Since its discovery, the direct imaging and determination of the crystal structure of few-layer graphdiyne has proven difficult because it is too delicate under irradiation by an electron beam. In this work, the crystal structure of a six-layered graphdiyne nanosheet was directly observed by low-voltage transmission electron microscopy (TEM) using low current density. The combined use of high-resolution TEM (HRTEM) simulation, electron energy-loss spectroscopy, and electron diffraction revealed that the as-synthesized nanosheet was crystalline graphdiyne with a thickness of 2.19 nm (corresponding to a thickness of six layers) and showed ABC stacking. Thus, this work provides direct evidence for the existence and crystal structure of few-layer graphdiyne, which is a new type of two-dimensional carbon material complementary to graphene.
Baughman, R. H.; Zakhidov, A. A.; de Heer, W. A. Carbon nanotubes-the route toward applications. Science 2002, 297, 787-792.
Baughman, R. H.; Eckhardt, H.; Kertesz, M. Structure-property predictions for new planar forms of carbon: Layered phases containing sp2 and sp atoms. J. Chem. Phys. 1987, 87, 6687-6699.
Coluci, V. R.; Galvão, D. S.; Baughman, R. H. Theoretical investigation of electromechanical effects for graphyne carbon nanotubes. J. Chem. Phys. 2004, 121, 3228-3237.
Li, Y. J.; Xu, L.; Liu, H. B.; Li, Y. L. Graphdiyne and graphyne: From theoretical predictions to practical construction. Chem. Soc. Rev. 2014, 43, 2572-2586.
Chen, J. M.; Xi, J. Y.; Wang, D; Shuai, Z. G. Carrier mobility in graphyne should be even larger than that in graphene: A theoretical prediction. J. Phys. Chem. Lett. 2013, 4, 1443-1448.
Jin, Z. W.; Zhou, Q.; Chen, Y. H.; Mao, P.; Li, H.; Liu, H. B.; Wang, J. Z.; Li, Y. L. Graphdiyne: ZnO nanocomposites for high-performance UV photodetectors. Adv. Mater. 2016, 28, 3697-3702.
Xiao, J. Y.; Shi, J. J.; Liu, H. B.; Xu, Y. Z.; Lv, S. T.; Luo, Y. H.; Li, D. M.; Meng, Q. B.; Li, Y. L. Efficient CH3NH3PbI3 perovskite solar cells based on graphdiyne (GD)-modified P3HT hole-transporting material. Adv. Energy Mater. 2015, 5, 1401493.
Li, G. X.; Li, Y. L.; Qian, X. M.; Liu, H. B.; Lin, H. W.; Chen, N.; Li, Y. J. Construction of tubular molecule aggregations of graphdiyne for highly efficient field emission. J. Phys. Chem. C 2011, 115, 2611-2615.
Huang, C. S.; Zhang, S. L.; Liu, H. B.; Li, Y. J.; Cui, G. L.; Li, Y. L. Graphdiyne for high capacity and long-life lithium storage. Nano Energy 2015, 11, 481-489.
Zhang, S. L.; Liu, H. B.; Huang, C. S.; Cui, G. L.; Li, Y. L. Bulk graphdiyne powder applied for highly efficient lithium storage. Chem. Commun. 2015, 51, 1834-1837.
Yang, N. L.; Liu, Y. Y.; Wen, H.; Tang, Z. Y.; Zhao, H. J.; Li, Y. L.; Wang, D. Photocatalytic properties of graphdiyne and graphene modified TiO2: From theory to experiment. ACS Nano 2013, 7, 1504-1512.
Zhang, X.; Zhu, M. S.; Chen, P. L.; Li, Y. J.; Liu, H. B.; Li, Y. L.; Liu, M. H. Pristine graphdiyne-hybridized photocatalysts using graphene oxide as a dual-functional coupling reagent. Phys. Chem. Chem. Phys. 2015, 17, 1217-1225.
Li, J.; Gao, X.; Liu, B.; Feng, Q. L.; Li, X. B.; Huang, M. Y.; Liu, Z. F.; Zhang, J.; Tung, C. H.; Wu, L. Z. Graphdiyne: A metal-free material as hole transfer layer to fabricate quantum dot-sensitized photocathodes for hydrogen production. J. Am. Chem. Soc. 2016, 138, 3954-3957.
Li, G. X.; Li, Y. L.; Liu, H. B.; Guo, Y. B.; Li, Y. J.; Zhu, D. B. Architecture of graphdiyne nanoscale films. Chem. Commun. 2010, 46, 3256-3258.
Qian, X. M.; Ning, Z. Y.; Li, Y. L.; Liu, H. B.; Ouyang, C. B.; Chen, Q.; Li, Y. J. Construction of graphdiyne nanowires with high-conductivity and mobility. Dalton Trans. 2012, 41, 730-733.
Zhou, J. Y.; Gao, X.; Liu, R.; Xie, Z. Q.; Yang, J.; Zhang, S. Q.; Zhang, G. M.; Liu, H. B.; Li, Y. L.; Zhang, J. et al. Synthesis of graphdiyne nanowalls using acetylenic coupling reaction. J. Am. Chem. Soc. 2015, 137, 7596-7599.
Matsuoka, R.; Sakamoto, R.; Hoshiko, K.; Sasaki, S.; Masunaga, H.; Nagashio, K.; Nishihara, H. Crystalline graphdiyne nanosheets produced at a gas/liquid or liquid/liquid interface. J. Am. Chem. Soc. 2017, 139, 3145-3152.
Li, J. Q.; Xie, Z. Q.; Xiong, Y.; Li, Z. Z.; Huang, Q. X.; Zhang, S. Q.; Zhou, J. Y.; Liu, R.; Gao, X.; Chen, C. Q. et al. Architecture of β-graphdiyne-containing thin film using modified glaser-hay coupling reaction for enhanced photocatalytic property of TiO2. Adv. Mater. 2017, 29, 1700421.
Ivanovskii, A. L. Graphynes and graphdyines. Prog. Solid State Chem. 2013, 41, 1-19.
Xia, J.; Wang, X. L.; Tay, B. K.; Chen, S. S.; Liu, Z.; Yan, J. X.; Shen, Z. X. Valley polarization in stacked MoS2 induced by circularly polarized light. Nano Res. 2017, 10, 1618-1626.
Lu, X.; Luo, X.; Zhang, J.; Quek, S. Y.; Xiong, Q. H. Lattice vibrations and Raman scattering in two-dimensional layered materials beyond graphene. Nano Res. 2016, 9, 3559-3597.
Sánchez-Royo, J. F.; Muñoz-Matutano, G.; Brotons-Gisbert, M.; Martínez-Pastor, J. P.; Segura, A.; Cantarero, A.; Mata, R.; Canet-Ferrer, J.; Tobias, G.; Canadell, E. et al. Electronic structure, optical properties, and lattice dynamics in atomically thin indium selenide flakes. Nano Res. 2014, 7, 1556-1568.
Zheng, Q. Y.; Luo, G. F.; Liu, Q. H.; Quhe, R. G.; Zheng, J. X.; Tang, K. C.; Gao, Z. X.; Nagase, S.; Lu, J. Structural and electronic properties of bilayer and trilayer graphdiyne. Nanoscale 2012, 4, 3990-3996.
Srinivasu, K.; Ghosh, S. K. Graphyne and graphdiyne: Promising materials for nanoelectronics and energy storage applications. J. Phys. Chem. C 2012, 116, 5951-5956.
Long, M. Q.; Tang, L.; Wang, D.; Li, Y. L.; Shuai Z. G. Electronic structure and carrier mobility in graphdiyne sheet and nanoribbons: Theoretical predictions. ACS Nano 2011, 5, 2593-2600.
Narita, N.; Nagai, S.; Suzuki, S.; Nakao, K. Electronic structure of three-dimensional graphyne. Phys. Rev. B 2000, 62, 11146-11151.
Egerton, R. F. Electron Energy-Loss Spectroscopy in the Electron Microscope; Springer: New York, USA, 1995.
Li, C.; Yao, Y.; Shen, X.; Wang, Y. G.; Li, J. J.; Gu, C. Z.; Yu, R. C.; Liu, Q.; Liu, M. Dynamic observation of oxygen vacancies in hafnia layer by in situ transmission electron microscopy. Nano Res. 2015, 8, 3571-3579.
Li, C.; Gao, B.; Yao, Y.; Guan, X. X.; Shen, X.; Wang, Y. G.; Huang, P.; Liu, L. F.; Liu, X. Y.; Li, J. J. et al. Direct observations of nanofilament evolution in switching processes in HfO2-based resistive random access memory by in situ TEM studies. Adv. Mater. 2017, 29, 1602976.
Gao, X.; Li, J.; Du, R.; Zhou, J. Y.; Huang, M. Y.; Liu, R.; Li, J.; Xie, Z. Q.; Wu, L. Z.; Liu, Z. F. et al. Direct synthesis of graphdiyne nanowalls on arbitrary substrates and its application for photoelectrochemical water splitting cell. Adv. Mater. 2017, 29, 1605308.
Chang, L. Y.; Kirkland, A. I. Comparisons of linear and nonlinear image restoration. Microsc. Microanal. 2006, 12, 469-475.
Marks, L. D. Wiener-filter enhancement of noisy HREM images. Ultramicroscopy 1996, 62, 43-52.